■レムニスケート積分(その7)
(その6)と同じテーマについて,再考する.すなわち,
∫1/(1-x^2)^(1/2)dx
は円(2次曲線),
∫1/(1-x^4)^(1/2)dx
はレムニスケート(4次曲線)に対応していますが,周長が
∫1/(1-x^3)^(1/2)dx
∫1/(1-r^3)^(1/2)dx
で表される曲線はどのようなものになるでしょうか?
===================================
【1】1/(1-t^3)^(1/2)
この円と双葉の中間に位置する幾何学的対象物は,微分方程式
(1+(dy/dx)^2)^(1/2)=1/(1-x^3)^(1/2)
dy/dx=(x^3/(1-x^3))^(1/2)
あるいは
{1+(rdθ/dr)^2}^(1/2)=1/(1-r^3)^(1/2)
dθ/dr=(r/(1-r^3))^(1/2)
を満たさなければなりませんが,このことから12次曲線
r^(3/2)=cos(3/2θ)
が得られます.
r^2=x^2+y^2,x=rcosθ,y=rsinθ
cos3θ=4cos^3θ−3cosθ
cos^2(3θ/2)=(1+cos3θ)/2=(4cos^3θ−3cosθ+1)/2
ですから
2r^3−1=4x^3/r^3−3x/r
2r^6−r^3=4x^3−3xr^2
(2r^6−4x^3+3xr^2)^2=r^6
(2(x^2+y^2)^3−4x^3+3x(x^2+y^2))^2=(x^2+y^2)^3 → 12次曲線(3次曲線ではありません!)
===================================