■3辺の長さの平方が等比数列をなす三角形
[Q]3辺の長さx,y,zが整数でかつ長さの平方x^2,y^2,z^2が等差数列をなす三角形は?
[A]a^2+b^2=c^2,S=ab/2,a>b
とおく.(a,b,c)はピタゴラス数で,Sはその面積というわけである.
a=l(m^2−n^2),b=2lmn,c=l(m^2+n^2),m>n
このとき,
x=a−b,y=c,z=a+b
a=(x+z)/2,b=(z−x)/2,c=y
とおくと,
x^2+4S=y^2,y^2+4S=z^2
x^2,y^2,z^2は公差d=4Sの等差数列で,x^2+z^2=2y^2が成り立つ.
d=4S=2ab=4l^2mn(m^2−n^2)=4l^2{n(m−1)m(m+1)−m(n−1)n(n+1)}
連続する3個の自然数の積は3!=6の倍数であるから,dは24の倍数となる.
ただし,dはすべての24の倍数をとりうるわけではなく,
d=24,96,120,・・・可能
d=48,72,・・・不可能
x=l|m^2−n^2−2mn|,y=l(m^2+n^2),z=l(m^2+n^2−2mn),t=m/n(>1)とおくことにより,
y=(t^2+1)x/|t^2−2t−1|
z=(t^2+2t−1)x/|t^2−2t−1|
たとえば,t=2とおくことにより,(x,y,z)=(k,5k,7k)→NG,ほかにも(7k,13k,17k)→OK,(7k,17k,29k)→NG,(23k,37k,47k)→OKなどが求まる.
===================================
[Q]3辺の長さx,y,zが整数でかつ長さの平方x^2,y^2,z^2が等差数列をなす三角形は?
ここでは,3つの平方数の和x^2+y^2+z^2は決して素数ではあり得ないことを示しておきたい.
x:y:z=1:m/n:(m/n)^2
y=m/n・x,z=(m/n)^2・x
x^2+y^2+z^2=x^2(1+(m/n)^2+(m/n)^4)=x^2/n^4(m^4+m^2n^2+n^4)
m^4+m^2n^2+n^4=(m^2+mn+n^2)(m^2−mn+n^2)
この数が素数pであり得るのは
m^2+mn+n^2=p,m^2−mn+n^2=1
のときに限られるが,必然的に
2(m^2+n^2)=p+1,2mn=p−1
(m−n)^2=(p+1)/2−p+1=(−p+3)/2→p=3
m=n=1,p=3
となってしまう.
===================================