■素数がもたらしたもの(その15)
オイラー・マクローリンの和公式を
Σk
について適用してみたい.
f(x)=x f^(5)(x)=0
f’(x)=1 f^(6)(x)=0
f”(x)=0 f^(7)(x)=0
f^(3)(x)=0 f^(8)(x)=0
f^(4)(x)=0 f^(9)(x)=0
===================================
Σ(0,n)k〜∫(0,n)xdx+(f(n)+f(0))/2+ΣB2k/(2k)!(f^(2k-1)(n)-f^(2k-1)(0))+R
∫(0,n)xdx=[x^2/2]=n^2/2
(f(n)+f(0))/2=n/2
(f'(n)-f'(0))/12=0
(f^(3)(n)-f^(3)(0))/720=0
(f^(5)(n)-f^(5)(0))/30240=0
(f^(7)(n)-f^(7)(0))/1209600=0
Σk〜(n^2/2+n/2=n(n+1)/2
===================================