■素数がもたらしたもの(その14)

 オイラー・マクローリンの和公式を

  Σ1/k^2

について適用してみたい.

  f(x)=1/x^2    f^(5)(x)=−6!/x^7

  f’(x)=−2/x^3    f^(6)(x)=7!/x^8

  f”(x)=6/x^4     f^(7)(x)=−8!/x^9

  f^(3)(x)=−24/x^5  f^(8)(x)=9!/x^10

  f^(4)(x)=120/x^6  f^(9)(x)=−10!/x^11

===================================

  Σ(1,n)1/k^2〜∫(1,n)1/x^2dx+(f(n)+f(1))/2+ΣB2k/(2k)!(f^(2k-1)(n)-f^(2k-1)(1))+R

  ∫(1,n)1/x^2dx=[-1/x]=-1/n+1

  (f(n)+f(1))/2=(1/n^2+1)/2

  (f'(n)-f'(1))/12=(-2/n^3+2)/12

  (f^(3)(n)-f^(3)(1))/720=(-24/n^5+24)/720

  (f^(5)(n)-f^(5)(1))/30240=(-6!/n^7+6!)/30240

  (f^(7)(n)-f^(7)(1))/1209600=(-8!/n^9+8!)/1209600

  Σ1/k^2〜-1/n+1/2n^2-1/6n^3+1/30n^5-1/42n^7n+1/30n^9+1+1/2+1/6-1/30+1/42-1/30+R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

  1+1/4 =1.25

  1+1/4+1/9 =1.36111

  1+1/4+1/9+1/25 =1.42361

  1+1/4+1/9+1/25+1/36 =1.46361

  1+1/4+1/9+1/25+1/36+1/49 =1.49139

  1+1/4+1/9+1/25+1/36+1/49+1/64 =1.5118

  1+1/4+1/9+1/25+1/36+1/49+1/64+1/81 =1.52742

  1+1/4+1/9+1/25+1/36+1/49+1/64+1/81+1/100=1.53977

  1+1/4+1/9+1/25+1/36+1/49+1/64+1/81+1/100=1.54977

  π^2/6=1.64493

  1+1/2+1/6-1/30+1/42-1/30=1.62381

===================================