■素数がもたらしたもの(その13)
オイラー・マクローリンの和公式を
Σk^3
について適用してみたい.
f(x)=x^3 f^(5)(x)=0
f’(x)=3x^2 f^(6)(x)=0
f”(x)=6x f^(7)(x)=0
f^(3)(x)=6 f^(8)(x)=0
f^(4)(x)=0 f^(9)(x)=0
===================================
Σ(0,n)k^3〜∫(0,n)x^3dx+(f(n)+f(0))/2+ΣB2k/(2k)!(f^(2k-1)(n)-f^(2k-1)(0))+R
∫(0,n)x^3dx=[x^4/4]=n^4/4
(f(n)+f(0))/2=n^3/2
(f'(n)-f'(0))/12=3/12・n^2
(f^(3)(n)-f^(3)(0))/720=0
(f^(5)(n)-f^(5)(0))/30240=0
(f^(7)(n)-f^(7)(0))/1209600=0
Σk^3〜(n^4/4+n^3/2+n^2/4={n(n+1)/2}^2
===================================