■次元のパラドックス

 最も広く知られた数学記号π(3.14159・・・)は,円周の直径に対する比を表します.それに対して,√2は1辺の長さが1の正方形の対角線の長さです.1辺の長さが1の立方体の対角線は,正方形の対角線よりも長く,√3である.また,1辺の長さが1の4次元超立方体のの対角線は,立方体の対角線よりも長く,√4=2である.

 一般に,1辺の長さが1のn次元超立方体の対角線の長さは√nであることがわかる.

===================================

【1】モ−ザーのパラドックス

 n次元ユークリッド空間において,1辺の長さが1の立方体[-1/2,1/2]^nをn次元単位立方体といいます.その体積は1ですが,もっとも離れた2頂点を結ぶ対角線の長さはn次元ユークリッド空間の距離の定義から

  √(1^2+1^2+・・・+1^2)=√n

となります.したがって,次元nが大きくなると対角線の長さ√nはどんどん大きくなり,身長170cmの人間はおろか,ついには地球でさえ含むことができるようになります.

 辺の長さが4の正方形に4つの単位円板を詰めると,4つの円板で囲まれた部分に,第5の小さな円を入れることができます.また,辺の長さが4の立方体の8つのカドに単位球を8個詰めると,中にできる隙間に第9の小さな球を入れることができます.ピタゴラスの定理によって第5の円,第9の球の半径はそれぞれ√2−1,√3−1だとわかります.

 これと同じことを4次元以上の空間で行うことができます.もはやイメージすることは不可能ですが,1辺の長さが4の4次元超立方体の16個のカドに16個の単位球を詰めると,中の隙間には半径√4−1=1の4次元超球(すなわち単位球)が入ります.同様に,1辺の長さが4のn次元超立方体の2^n個のカドに単位球を詰めると,中の隙間に半径√n−1のn次元超球が詰められるのです.

 しかし,ここの驚きが潜んでいます.たとえば,n=9の場合,中に詰められるn次元超球の半径は√9−1=2であり,この球は外側の立方体の表面に接してしまい,n>9だとはみ出してしまうのです.この驚くべき結論は,日常生活ではありえないだけに面食らってしまいます.

 次元とともにはみ出る部分が増えているのですが,球の詰め込みに関するこのはみ出し現象は,モーザーのパラドックスとして知られているものです.この逆説は,人間の直観や勘は3次元までの世界では働きますが,4次元以上の高次元についてはあまり働かないという例として,しばしば引き合いに出されます.

===================================