■リーマン予想の先に何がある(その3)
[参]黒川信重「リーマン予想の先へ」東京図書
===================================
【1】リーマン予想の3つの同値な言い換え
[1]コッホの結果(1901年)より,リーマン予想=「nとn+k√nの間に素数はある」ですが,
π(x)=Li(x)+O(x^1/2logx)
|π(x)−Li(x)|≦C・x^1/2logx
Li(x)=∫(2,x)dt/logt
Li(x)は対数積分関数と呼ばれますが,π(x)をx/logxで近似するより,対数積分を用いたLi(x)の近似はさらに適切な素数分布の近似式になっています.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[2]ラガリアスの同値条件(2002年)
nの約数の和をσ(n)で表し,調和級数のn次部分和を
Hn =1/1+1/2+1/3+1/4+・・・+1/n
と定義します.(n>1ならばHn は整数にはなりません.)
このとき,リーマン予想は
σ(n)≦Hn+logHnexpHn
がn≧1に対して成立すると等価です.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[3]ロバンの同値条件(1984年)
nを無限大にしたとき,調和級数
H∞= 1/1+1/2+1/3+1/4+・・・
は発散しますが,そのn次部分和Hnは離散的な世界で連続関数lnnに対応するものであり,自然対数は双曲線y=1/xの下の面積として定義できます.
したがって,双曲線y=1/xを上と下から棒グラフではさんで近似することにより,lognとlogn+1の間に押し込まれまれることがわかります(∵∫1/xdx=logx).
したがって,Hn とlognの比{Hn /logn}は
Hn /logn→1 (n→∞)
です.
一方,Hn とlognの差{Hn −logn}は確定した極限値γに収束します.
Hn −logn→γ (n→∞:Hn =logn+γ+O(1/n))
(n→∞:Hn =logn+γ+o(1))
この極限値はオイラーの定数γとして知られており,約0.57722になります.オイラーの定数の比較的よい近似値は4/7で,さらによい近似値は41/71で与えられます.
オイラーの定数γを用いると,リーマン予想は
σ(n)<expγnloglogn
がn>5040に対して成立すると等価です.
===================================
【2】雑感
[2][3]は初等的な条件になっていて,リーマン予想に挑戦するならばこのルートからでしょう.
===================================