■奇数ゼータの無理数性(その6)
微積の学び初めに,x→0としたとき,
sinx/x→1
に出会う.この結果は
(sinx)’=cosx,(cosx)’=−sinx
を示すのに用いられる.
その後,sinxのテイラー展開によって,無限級数
sinx=x−x^3/3!+x^5/5!−x^7/7!+・・・
sinx/x=1−x^2/3!+x^4/5!−x^6/7!+・・・
が示される.
それでは,任意のxに対して,無限積公式
sinx/x=cosx/2cosx/4cosx/8・・・
も示しておこう.
(証明)
sinx=2sinx/2cosx/2
=4sinx/4cosx/4cosx/2
=8sinx/8cosx/8cosx/4cosx/2
・・・・・
=2^nsinx/2^ncosx/2^n・・・cosx/2
書き直すと
sinx=x[sin(x/2^n)/(x/2^n)]cosx/2・・・cosx/2^n
ここで,n→∞のとき,
sin(x/2^n)/(x/2^n)→1
であるから,sinxの無限積表示
sinx=xΠcosx/2^n
=x(1−x^2/π^2)(1−x^2/4π^2)(1−x^2/9π^2)・・・
が得られる.この結果は,sinxがx=0,±π,±2π,±3π,・・・のとき,0になることに一致している.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ここでは,cosxの無限積表示
cosx=(1−4x^2/π^2)(1−4x^2/9π^2)(1−4x^2/25π^2)・・・
を用いているが,tanxに対しては,部分分数の無限級数表示
tanx=8x[1/(π^2−4x^2)+1/(9π^2−4x^2)+1/(25π^2−4x^2)+・・・]
が成り立つ.
x=π/4とすると,
1=4/π(1−1/3+1/5−1/7+・・・)
であるから,グレゴリー・ライプニッツ級数
π/4=1−1/3+1/5−1/7+・・・
が導かれる.
グレゴリー・ライプニッツ級数はπを含んでいる無限級数として最初のものなのだが,オリジナルは
arctanx=x−x^3/3+x^5/5−x^7/7+・・・
から発見されたものである.
また,x→0としたときのtanx/xの漸近挙動から,
π^2/8=1/1^2+1/3^2+1/5^2+・・・
さらに,
S=1/1^2+1/2^2+1/3^2+・・・
=1/1^2+1/3^2+1/5^2+・・・+1/2^2+1/4^2+1/6^2
=1/1^2+1/3^2+1/5^2+・・・+1/4[1/1^2+1/2^2+1/3^2+・・・]
=π^2/8+S/4
したがって,
S=1/1^2+1/2^2+1/3^2+・・・=π^2/6
となるが,これはオイラーにより発見された有名な級数である.
===================================