■ガウス整数とアイゼンシュタイン整数(その2)
2平方和定理「2より大きい素数が2つの整数a,bを用いて,p=a^2+b^2と表されるためには,pが4n+1型素数であることが必要十分である」は,ガウス整数の世界では
p=(a+bi)(a−bi)
と素因数分解される条件を与えている定理であるとみることができる.
四元数,八元数の世界ではどうだろうか?
===================================
[1]四元整数(リプシッツの整数)
ハミルトンの四元数
H=a+bi+cj+dk
において,a,b,c,dを整数に限った「四元整数」は4次元単純立方格子と同一視することができます.
ハミルトンの四元整数環は乗法の交換法則が成り立たない非可換環ですが,4次元空間内の原点を中心とする半径√nの3次元球面上には必ず格子点があることを主張しているのが「ラグランジュの定理」であることは,このコラムでもこれまで何回か説明したとおりです.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[2]フルヴィッツの整数とD4格子
四元整数(リプシッツの整数)に
(1+i+j+k)/2
を追加した数の体系を「フルヴィッツの整数」と呼びます.a,b,c,dのすべてが整数か,あるいはすべてが半整数のとき,フルヴィッツの整数なのです.フルヴィッツの整数全体は整数座標点と半整数座標点からなりますので,4次元体心立方格子であるというわけです.
なお,
(1+i+j+k)/2
は1の原始6乗根であり,
ζ=ζ++++=(1+i+j+k)/2
とおくと,
ζ^2=ζ-+++,ζ^3=−1,ζ^4=ζ----,ζ^5=ζ+---,ζ^6=1
となります.
フルヴィッツ単数すなわち1の約数は,
±1,±i,±j,±k 8個
ζ±±±±のあらゆる符号の組合せ(±1±i±j±k)/2をとった16個
の計24個あります.
四元数ではかけ算の交換法則は成り立ちませんから,Pを2つのフルヴィッツ整数の積で表す方法は単数Uを右からかけるP=P’U,単数Vを左からかけるP=VP”の2通りあります.Pがフルヴィッツ素数のときの素因数分解はU,Vを24個のフルヴィッツ単数上を動かしたときの
P=PU^(-1)・U,P=V・V^(-1)P
だけです.
したがって,Qのフルヴィッツ素数への分解
Q=P0P1・・・Pk
があるとき,
Q=P0U1・U1^(-1)P1U2・・・Uk^(-1)Pk
も素因数分解となります.このような単数転移を除いて,フルヴィッツの整数においても素因数分解の一意性が成立します.それに対して,リプシッツ整数の分解は一意ではありません.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[3]D4格子の第n近接
この24個の単数は4次元空間で正24胞体をなしています.正24胞体に相当する3次元正多面体はありません.なぜかというと,正24胞体は自己双対かつ中心対称であり,3次元空間でそれに対応する正多面体はないからです.実は24胞体は,すべての次元を通じて,単体以外の唯一の自己双対な正則胞体であって,例外中の例外といってもよいものなのです.
この24胞体の対称性を,鏡映で生成される既約な有限群(ルート系)との関係でみても興味深いものがあります.n次元空間において高度の対称性をもったベクトルの集合がルート系なのですが,n次元正単体とn次元立方体の対称群は,それぞれAn-1,Bn(Cn)で表されます.それに対して,24胞体は1つの例外型対称群F4をもつことが知られています.
2個の正24胞体を中心を一致させて重ねて回転させます.これはちょうど平面上でダビデの星が2つの正六角形を30°ずらして重ねたものと似ているわけですが,この対称性がF4に相当します.正24胞体は単体以外の唯一の自己双対な正則胞体であるという事実がF4と関係しているのですが,この点もまた注目すべきものでしょう.
なお,正24胞体による空間充填は4次元独特の充填形です.正24胞体の頂点は正8胞体と正16胞体の頂点をなしますから,正24胞体は3次元の菱形12面体に対応するものであって,正24胞体による4次元空間充填形は4次元版の菱形12面体による空間充填形に相当します.すなわち,それは4次元の面心立方格子といってよいものであって,正24胞体に含まれる正16胞体は互いに60°をなしますから,D4の3対性をもっているのですが,4次元の最密正則胞体充填構造D4は正24胞体で埋めつくされているときであることが知られています.
D4格子(=F4格子)は4次元の体心立方格子であり,正24胞体による4次元空間の充填形に相当するものです.ここで,σ0(n)をnの奇数の約数の和と定義します.そうすればD4格子では原点からのノルムがnである点の個数が
24σ0(n)
で与えられるのですが,
n=1 → 24・1=24個
n=2 → 24・1=24個
n=3 → 24・(1+3)=96個
n=4 → 24・1=24個
n=5 → 24・(1+5)=144個
n=6 → 24・(1+3)=96個
n=7 → 24・(1+7)=192個
n=8 → 24・1=24個
n=9 → 24・(1+3+9)=312個
n=10 → 24・(1+5)=144個
さらに,D4格子の各格子点の勢力範囲が1/2であることを使うと
Σ1/n^2=π^2/6
を証明できます.同様に,例外型リー環に属する8次元のE8格子では
240σ3(n)
であり,勢力域の体積が1/16であることから
Σ1/n^4=π^4/90
を得ることができます.
===================================
[4]ケイリー整数とE8格子
八元数Σajejにおいて,係数aj(j=0~7)が
1)整数値をとるもの
をグレーブス整数と呼びます.さらに
2)半整数値の奇数倍をとるもの
3)4個が整数値,4個が半整数値の奇数倍をとるもの
を加えて,「ケイリーの(八元)整数」と呼びます.
半整数値をとる座標は0個か4個か8個です.ただし,3)において整数である番号は(i,j,k)7組に0(実数)を加えた集合および(0〜7)に対するその補集合の14組に限ります.
このような点をすべてとると,8次元空間内で隣り合う2点間の距離がすべて1の格子ができあがります.原点に隣接する点は240個あり,それらと原点を結ぶベクトルが例外型リー環のE8ルート系を表すので,この格子をE8格子といいます.
E8格子にはほかにもいくつかの構成法があり,ここではケイリー整数との関連で説明しましたが,その配列は本質的にはこの形しかありません.S^7の上の240個の点は直交変換で互いに移りうる点の組を同じものとみなすと一意なのです.
そして,8次元空間において,2個の正軸体(正8面体の拡張)と1個の正単体(正4面体の拡張)を組み合わせると空間充填形ができるのですが,ケイリー整数の作る格子がその具体形になっていて,E8はA8とD8両方を含んでいるというわけです.
なお,E8格子において,原点からの距離が√nである格子点の個数は
240σ3(n)
(ここで,σ3(n)はnの約数の3乗の和)と表せることが知られています.すなわち,
n=1(1^1,0^7)(1/2^4,0^4) → 240・1^3=240個
n=2(1^2,0^6)(1/2^4,1^1,0^3)(1/2^8) → 240・(1^3+2^3)=2160個
n=3 → 240・(1^3+3^3)=6720個
n=4 → 240・(1^3+2^3+4^3)=17520個
n=5 → 240・(1^3+5^3)=30240個
こうして,ケイリー単数は240個あることがわかります.
±(0),±(1),±(2),±(3),±(4),±(5),±(6),±(7) 16個
と(i,j,k)7組に0(実数)を加えた集合および(0〜7)に対するその補集合の14組のあらゆる符号の組合せ
1/2(±0±i±j±k) 14・16個
ケイリーの整数の素因数分解では,フルヴィッツ整数のように単数転移だけでは一意的ではなく,結合法則の欠如も考慮しなければなりません.PU・U1^(-1)QがPQに等しいとは限らないのです.しかしながら,たとえば,P1((P2P3)P4)と(P1P2)(P3P4)の間の関係づけの正当化(メタ転移)を要求することによって一意的にできるのです.
===================================