■パスカルの三角形の概3等分

 正単体の基本単体をn−1回切頂・切稜すると2n胞体になる.この多面体のすべての頂点を求めてみたところ,頂点数は2^n個あり,この多面体は超立方体と組み合わせ同値であることが確認された.

 胞数2n,頂点数2^nの多胞体を対称超平面で切半すると,切断面はn−1次超立方体(頂点数2^n-1)と組み合わせ同値になることが予想されるが,実際に計算してみると

n   切断面     上    下     計

3     4     2    2     8

4     6     5    5    16

5    12    10   10    32

6    22    21   21    64

7    44    42   42   128

8    86    85   85   256

9   172   170  170   512

10  342   341  341  1024

となって,頂点数2^nが概3等分されていることがわかった.

 2^nは3では割り切れないが,

  2^n=1  (mod3)

  2^n=2  (mod3)

であるから,概3等分されるのである.

===================================

【1】パスカルの三角形の恒等式

                     sum  mod3

        1   1          2    2

      1   2   1        4    1

    1   3   3   1      8    2

  1   4   6   4   1   16    1

 パスカルの三角形では,以下の有名な恒等式が知られている.

  (n,0)+(n,1)+・・・+(n,n−1)+(n,n)=2^n

  (n,0)−(n,1)+・・・+(−1)^n(n,n)=0

  (n,0)^2+(n,1)^2+・・・+(n,n−1)^2+(n,n)^2=(2n,n)

 しかし,

  (n,0)+(n,1)+・・・+(n,k)=[2^n/3]

となるような整数kをうまく定めることはできそうにない.

===================================