■面積問題と追跡曲線
[Q]△ABCのBCを延長した線上に点A’がありBC=CA’.点B’,C’も同様である.△ABC=1のとき,△A’B’C’=?
[A]有名な幾何の問題である.新たにできる3つの三角形の面積はそれぞれ2であるから,△A’B’C’=7
===================================
一般に与えられた三角形の各辺を同じ倍率kで伸縮した位置に点をとって作った三角形の面積は,もとの三角形の面積の
M=3k^2−3k+1=3(k−1/2)^2+1/4
倍になる.
k=1/3 → M=1/3 (3等分)
k=1/2 → M=1/4 (4等分)
k=2/3 → M=1/3 (3等分)
k=1 → M=1
k=2 → M=7 (7等分)
となる.
0<k<1のときはもとの三角形より小さくなり,k=1/2のとき最小値1/4をとる.k>1のときはもとの三角形より大きくなり,k=2のときには7倍になる.
同じく,四角形の各辺を同じ倍率kで伸縮した位置に点をとって作った四角形の面積は,もとの四角形の面積の
M=2k^2−2k+1=2(k−1/2)^2+1/2
倍になる.0<k<1のときはもとの四角形より小さくなり,k=1/2のとき最小値1/4をとる.k>1のときはもとの四角形より大きくなり,k=3/2のときには5/2倍になる.
各辺を同じ倍率kで伸縮した位置に点をとって作った三角形の面積は,もとの図形の三角形小部分の面積のk(k−1)倍になるが,もとの三角形は3重に,もとの四角形は2重に数えられているので,それぞれ,
3k(k−1)+1
2k(k−1)+1
になるというわけである.
しかし,任意のn(≧5)角形では,与えられた図形に数えられない部分が生ずるので,同様の公式は存在しないことになる.
===================================
有名な幾何の問題であるが,以上の関係が追跡曲線の問題の解を得るのに重要であるとは気づきにくいだろう.
正方形の4つの頂点の1匹ずつ犬がいる.それぞれ,同じ速さで隣の犬を追いかけたとする.それぞれの犬はいつも前方にいる犬に向かって同じスピードで進む.4匹の犬を結ぶ図形は回転しながら次第に小さくなる正方形になり,元の正方形の中心で出会うことになる.
[Q]このとき犬のたどる軌跡は?
[A]等角らせん
[Q]正方形の1辺の長さは30m,それぞれの犬は1m/sの速度で動くとする.犬達が正方形の中心で出会うのにどれくらいの時間がかかるか?
[A]等角らせんの伸開線と縮閉線は,もとの等角らせんと合同な等角らせんになる.犬の進む経路と正方形の1辺の長さは等しいからら,30秒.
===================================