20世紀のうちに解決された悪名高き難問に,四色問題
「任意の平面地図は高々4色で色分けできるか?」
がある.5色で色分けできることはヒーウッドによって100年以上も前から知られていたが,四色問題が肯定的に解決されたのは1970年代後半のことで,アペルとハーケンはコンピュータを使ってこの証明を成し遂げた.四色問題の証明は場合分けの数が膨大で,コンピュータによる解析に依存せざるを得なかったのである.
3次元のn個の領域を塗り分けるにはn色必要な例を作ることができる.それに対して2次元では「どんな平面地図でも4色で塗り分けられる」ことが証明されたのだが,多くの数学者はこの証明においてコンピュータによる解析が本質的だと知ると落胆し,失望したと伝えられている.
その証明は1995年にロバートソンらによって改良されてかなり簡単になったとはいえ,いまだ手計算で証明を完成させた人はいない.ともあれ,四色問題がグラフ理論の発展に対する推進力となったことは確かである.
今回のコラムでは,グラム理論の先駆けともいえるオイラーの公式,トーラス面の塗りわけに関するヒーウッドの公式などについて紹介したい.
===================================
【1】オイラーの多面体定理
凸多面体の頂点,辺,面の数をそれぞれv,e,fとすると,
v−e+f=2
が成り立ちます.これは3次元立体について,0次元の特性数であるv,1次元の特性数であるe,2次元の特性数であるfの関係を述べたものと解釈されます.
オイラーは晩年の17年間はまったくの盲目でしたが,それにもかかわらず非常に多くの定理・公式を発見していて,量(v−e+f)はオイラー標数と呼ばれます.オイラー標数は幾何学において重要な概念である位相不変量の草分けであり,一般に,図形がいくつかの3角形によって分割されているとき,
頂点の数−辺の数+3角形の数
は分割の仕方によらず定まり,図形に固有な量になるというものです.
平面図形(地図)は1つの面が無限大となって全体が一面に広がってしまった正多面体と解釈することができますから,オイラー標数は1となります.
v−e+f=1
しかし,外部領域を含めるならば,多面体の場合と同様に
v−e+f=2
が成り立つのです.
また,種数(穴の数)gの向き付け可能な閉曲面の場合は
v−e+f=2−2g
となることはよく知られています.逆にいうと,多面体の示性数gは,g=1−(f−e+v)/2で定義される量です.
オイラーの多面体定理を一般化したものが,オイラー・ポアンカレの定理です.オイラー数はベッチ数の交代和
Pv−Pe+Pf−Pg+Ph−Pi+・・・
に等しいというのが,オイラー・ポアンカレの内容ですが,ベッチ数とは,形には関係しないで,接触と分離にだけ関係するトポロジカルな示性数で,簡単にいえば図形の中に潜む種々の次元の穴の数のことです.
凸多角形では,
v−e=0
ですから,n角形はn辺形になりますし,また,胞の個数をcで表すと,4次元空間では,
v−e+f−c=0
というオイラー・ポアンカレの定理が成り立っています.
ところで,線分と三角形および四面体は,それぞれ最も簡単な1次元図形,2次元図形,3次元図形です(単体:シンプレックス).線分は2つの端点(0次元の境界要素)をもち,その内部は1次元です.三角形は3つの頂点(0次元)と3つの辺(1次元)をもち,その内部は2次元です.四面体は4つの頂点(0次元)と6つの辺(1次元)および4つの面(2次元)をもち,その内部は3次元です.これらの数をまとめて書くと
2,1
3,3,1
4,6,4,1
ですが,これらの数はパスカルの三角形の一部分に相当しています.これから類推すると4次元のシンプレックスは5,10,10,5,1,すなわち5つの頂点と10辺,10面,5面,5胞(正5胞体)になります.
一般に,n次元単体については,
v=n+1C1,e=n+1C2,f=n+1C3,c=n+1C4,・・・,
また,
n+1C0−n+1C1+n+1C2−n+1C3+・・・+(-1)^(n+1)n+1Cn+1=0
ですから,
Pv−Pe+Pf−Pg+Ph−Pi+・・・=1±1
すなわち,オイラー標数は,nが奇数のとき2,偶数のとき0になることが理解されます.
なお,偶数次元と奇数次元とでの同様の交代性は,超球の体積にも現れます.n次元単位超球{x1^2+x2^2+・・・+xn^2≦1}の体積をvnとすると,v1=2(直径),v2=π(面積),v3=4π/3(体積)はご存知でしょうが,vnは漸化式:
vn/vn-2=2π/n
によって求めることができます.そして,任意のnに対して,
vn=2(2π)^((n-1)/2)/n!! nが奇数の場合
vn=(2π)^(n/2)/n!! nが偶数の場合
であり,1次元から6次元までを具体的に書けば,
vn=2,π,4π/3,π^2/2,8π^2/15,π^3/6
という具合に,πのべき乗は偶数次元になるたびに1つあがります.
===================================
【2】オイラーの多面体定理と菱形多面体
正多面体の頂点,辺,面の数をそれぞれv,e,fとすると,pf=2e,qv=2eが成り立ちます.さらに,v+f=e+2が成り立ちますから辺の数eは
1/e=1/p+1/q−1/2
v=4p/(2p+2q−pq),
e=2pq/(2p+2q−pq),
f=4q/(2p+2q−pq)
となります.
菱形多面体に対してオイラーの公式を使うと,
4f=2e,qv=2e
ここで頂点を鋭角同士,鈍角同士で合わせると,鋭角の頂点が何面合わさるか(3,4,5のいずれか)に応じて,六面体,(標準的な)十二面体,三十面体の3種類しかできません.
この6,12,30という値は正多面体の辺の数と同じですが,一松信先生のお話によれば,これは偶然ではなく,実質的に式
1/e=1/3+1/q−1/2 (q=3,4,5)
で与えられる量とのことです.
三十面体の「ベルト」を押しつぶしてできる二十面体や第2種十二面体では,菱形の鋭角と鈍角の頂点が混じって会する頂点があります.そのため,菱形多面体の分類には少し手間がかかるようです.
===================================
【3】オイラーの多面体定理と星形正多面体
凹型正多面体まで含めると,正多面体は全部で9種類あり,プラトンの立体と呼ばれる凸型5種類の他の4種類は,星形正多面体(ケプラーがみつけた星形小十二面体,大十二面体と約200年後にポアンソがつけ加えた星形大二十面体,大二十面体の4種類)です.星形正多面体は4種類しかないことはコーシーが示しています.
オイラーの多面体定理より,凸多面体に対してはg=0となります.ところが,4種類の星形正多面体のうち,2種類はg=0ですが,残りの2種類はg=4になります.g=4はトポロジカルにいえば穴が4つあるドーナツと同一ですから,g=0のみを星形正多面体と呼ぶべきだとの主張もあります.
なお,同じ大きさの正4面体2個による相貫体<ケプラーの8角星>はダビデの星の3次元版ですが,星形正多面体には加えません.さらに,一様多面体(準正多面体の星形化)は75種類,ザルガラー多面体(すべての面が正多角形である凸多面体)は正多面体,準正多面体を除くと92種類存在します.
===================================
【4】オイラーの公式の使い方
正則とは限らない一般の多面体では
Σpi=p1+・・・+pf=2e,
Σqi=q1+・・・+qv=2e
となります.pi≧3,qi≧3ですから
2e≧3f,2e≧3v
このことから多面体は7本の辺をもつこと(e=7)は不可能であることが証明されます.
(証)e=7なる多面体が存在したと仮定すると,3f≦14,3v≦14.f,vは面,頂点の個数なので,3より大きな整数でなければならない.したがって,f=4,v=4,e=7となるが,これはオイラーの多面体定理
v−e+f=2
を満たさないので矛盾が生じる.
このことから
f≧4,v≧4,e≧6(e≠7)
であることがわかりましたが,他にオイラーの多面体定理で示される制限はないのでしょうか?
v−e+f=2,2e≧3f,2e≧3v
を組み合わせると,
2v+2f=2e+4≧3f+4 → f≦2v−4
2v+2f=2e+4≧3v+4 → v≦2f−4
これらはシュタイニッツの定理(1906年)と呼ばれますが,オイラー自身すでに
f≦2v−4,v≦2f−4
という結果を知っていたようです.
また,別の組合せ方をすると,
3v+3f=3e+6≦2e+3f → 3f−e≧6
3v+3f=3e+6≧2e+3v → 3v−e≧6
も得られます.
つぎに,3次元立体では必ず頂点に結合する辺の個数が3の頂点か3角形の面をもつことを示します.n本の辺をもつfn枚の面とn本の辺が交わるvn個の頂点をもつ凸多面体について,
i)Σnfn=Σnvn
ii)Σf2n+1は偶数
iii)v3+f3>0
を順に示していきます.
(証)各辺は2個の頂点をもつから,Σnvn=2E.また,各辺では2枚の面が交わるからΣnfn=2E.
(証)i)より,Σ(2n+1)f2n+1=(偶数),したがって,Σf2n+1も偶数.
(証)E=Σen,V=Σvn,F=Σfn,Σnfn=Σnvn=2E. もしv3=0,f3=0ならば,2E=4v4+5v5+・・・≧4V.同様に,2E≧4F.これより,V−E+F≦E/2+E/2−E=0.これはオイラーの多面体定理:V−E+F=2に矛盾するから,v3,f3のうち,少なくとも1つは0でない.
さらに,オイラーの多面体定理で示される制限からいえることとして,
F=f3+f4+f5+・・・
2E=3f3+4f4+5f5+・・・
を
6F−2E≧12
に代入すると
3f3+2f4+f5−f7−2f8−3f9−・・・≧12
地図のように2つの辺に囲まれた領域まで許すことにすると,この数え上げ公式は
4f2+3f3+2f4+f5−f7−2f8−3f9−・・・=12
となります.いずれにせよ,係数が1ずつ小さくなり,それが0となるf6は式中に現れません.
このことから,f3,f4,f5の少なくとも1つは0でない→多面体には3角形か4角形面か5角形面が少なくとも1つなければならない,同様に,多面体の少なくとも1つの頂点は3次か4次か5次でなければならない→すべての頂点の次数が6以上となることは不可能であり,必ず次数が5以下の頂点をもつことが導き出されます.これもオイラーが知っていた結果であるということです.
ここで,
(1)f2=f3=f4=0だとすると,少なくとも12個のf5がなければならないことになる
(2)多面体の面がすべてf5とf6であるならば,f5=12(切頂二十面体)
(3)多面体の面がすべてf4とf6であるならば,f4=6(切頂八面体)
(4)多面体の面がすべてf4,f6,f8であるならば,f4=f8+6(斜方切頂立方八面体)
これらの結果は極めて重要で,四色定理の証明の中核をなしています.
===================================
【5】ヒーウッドの公式
オイラーの公式は単純ですが,要はその使い方というわけで,たとえば,多面体には3角形か4角形面か5角形面が少なくとも1つなければならないことはもっと簡単に証明できます.
どの領域も少なくとも6つの領域で囲まれていると仮定すると
6f≦2e
また,このような問題を解くにあたっては,すべての交点で3本の境界線が会している地図だけを考えればよいので,
3v≦2e
これらをオイラーの公式に代入すると
v−e+f≦1/3e−e+2/3e=0≠2
となって矛盾を生じます.したがって,5個以下の隣接領域しかもたない領域が少なくともひとつあることになります.
平面や球面上に描かれた地図に関するオイラーの公式は
v−e+f=2
でしたが,トーラス上の地図に関するオイラーの公式は
v−e+f=0
です.
トーラスでは6個以下の隣接領域しかもたない領域が少なくともひとつあることを証明するために,どの領域も少なくとも7つの領域で囲まれていると仮定すると
7f≦2e
また,3v≦2eですから
v−e+f≦2/7e−e+2/3e=−1/21e≠0
という矛盾を引き出すことができます.
したがって,トーラスでは6個以下の隣接領域しかもたない領域が少なくともひとつあることになります.このことを利用すると,
「トーラス上のどんな地図でも7色で塗り分けられる」
ことが証明されます.ヒーウッドは実際に7色を必要とする例もあげています.
これを証明したヒーウッドはさらにg個の穴があいたトーラス上の地図に関するオイラーの公式
v−e+f=2−2g
を利用して
(1)2個の穴があいているトーラス上の地図はどれも8色で塗り分けられる
(2)3個の穴があいているトーラス上の地図はどれも9色で塗り分けられる
・・・・・・・・・・・・・・・・・・・・・・・・
(3)10個の穴があいているトーラス上の地図はどれも14色で塗り分けられる
に引き続いて,
(4)g個の穴があいているトーラス上の地図はどれもH(g)色で塗り分けられる
H(g)=[{7+√(1+48g)}/2]
を証明しました.
[・]はガウス記号で,
g:1,2,3, 4, 5, 6, 7, 8, 9,10
H:7,8,9,10,11,12,12,13,13,14
となるのですが,しかし,ヒーウッドはg≧2に対してそのような地図が実在することを示すことはできませんでした.そのため,この問題は「ヒーウッド予想」と呼ばれることになりました.
1968年,リンゲルとヤングスは,g個の穴のあいているトーラス上にこれだけの色を必要とする地図が存在することを証明したのですが,ヒーウッド予想(1890年)が最終的に証明されるまでには77年もの歳月が必要だったというわけです.
===================================
【6】四色問題
平面上の四色問題では,地図が平面ではなく球面上に描かれているものとすると,外部領域は他の領域と何の違いもないことになります.したがって,外部領域を塗っても塗らなくても構わないことになり,平面上の四色問題は球面上の四色問題と等価と考えることができます.
ヒーウッドは五色定理を鮮やかに証明できても,四色定理を証明することはできませんでした.したがって,平面・球面上の四色問題よりも先に,トーラス上の地図の塗り分けには7色必要であることが証明されたことになります.
ヒーウッドの式はgが正の数の場合にしか適用できないのですが,仮にg=0を代入するとH(0)=4となって,穴のあいていないトーラスすなわち球の表面に置かれた地図を塗り分けるために必要な色の数を正しく導き出すことができます.しかし,残念ながらこれは偶然の一致であり,ヒーウッド予想の証明から四色定理を導くことはできません.
大きい種数gに対するヒーウッドの公式は四色問題が証明されるよりもかなり前に証明されているのですが,種数0の場合,つまり平面的集合の場合が最も難しいという事実は注目すべき事です.
四色問題の証明では,地図を電気回路とみなして
4f2+3f3+2f4+f5−f7−2f8−3f9−・・・=12
の条件の下の放電(電荷の移動)に帰着させる(放電法)のですが,この手続きにはどうしてもコンピュータが必要になりました.アペルとハーケンの後も放電法の改良が続けられ,1994年,ロバートソン,サンダース,シーモア,トーマスの4人が新たな1章をつけ加えたことは冒頭に記したとおりです.
しかし,これとて基本的にはアペル,ハーケンと同じコンピュータ路線なのです.確かにコンピュータを使った証明を美しいあるいはエレガントな数学と呼ぶことはできないかもしれません.コンピュータを使わない証明にはこれまでにないようなまったく新しいアイディアが必要になると思われるのですが,そうしたアイディアは今日もなお登場していないのです.
===================================
【参】クロムウェル「多面体」シュプリンガー・フェアラーク東京
ウィルソン「四色問題」新潮社
最近入手したこれらの本を読んでみると,教えられる点が多いのに驚かされます.確かにこういった歴史的な面からまとめた日本語の本が(翻訳以外に)余りないのが残念です.
===================================