■ピタゴラス三角形とアイゼンシュタイン三角形(その7)
4n+1型素数は,x^2+y^2の形に表すことができる.
4n+3型素数は,x^2+y^2の形に表すことができない.
5n+1型素数は,x^2−5y^2の形に表すことができる.
5n+2型素数は,x^2−5y^2の形に表すことができない.
5n+3型素数は,x^2−5y^2の形に表すことができない.
5n+4型素数は,x^2−5y^2の形に表すことができる.
8n+1型素数は,x^2−2y^2の形に表すことができる.
8n+3型素数は,x^2−2y^2の形に表すことができない.
8n+5型素数は,x^2−2y^2の形に表すことができない.
8n+7型素数は,x^2−2y^2の形に表すことができる.
8n+1型素数は,x^2+2y^2の形に表すことができる.
8n+3型素数は,x^2+2y^2の形に表すことができる.
8n+5型素数は,x^2+2y^2の形に表すことができない.
8n+7型素数は,x^2+2y^2の形に表すことができない.
12n+1型素数は,x^2−3y^2の形に表すことができる.
12n+5型素数は,x^2−3y^2の形に表すことができない.
12n+7型素数は,x^2−3y^2の形に表すことができない.
12n+11型素数は,x^2−3y^2の形に表すことができる.
を拡張してみます.
[参]コンウェイ「素数が香り,形が聞こえる」シュプリンガー・フェアラーク東京
===================================
【1】4平方和定理の拡張
何種類かの4変数2次形式,たとえば,
x^2+y^2+z^2+mw^2 (m=1,2,3,4,5,6,7)
はすべての正の整数を表現することができます.
(証明)ある数を表現しないと仮定すると,3平方和定理によりその数は8k+7の形でなければなりません.そのような数から,
mw^2 (w=1,1,2,1,1,1,2)
を引くと,それぞれ8k+6,8k+5,8k+3,8k+3,8k+2,8k+1,8k+3の形の数となり,これらはすべてx^2+y^2+z^2の形に表現されます.
なお,変数の数を任意とする正定値2次形式(たとえば,a^2+2b^2+5c^2+5d^2+15e^2)が
1,2,3,5,6,7,10,14,15
の15までのなかでこれら9つの数を表現するならば,その2次形式はすべての正整数を表現することが知られています.この定理はルジャンドルの4平方和定理も内包しています.
しかしながら,ルジャンドルの定理のように3変数2次形式
[x,y,z][a,h,g][x]=n
[h,b,f][y]
[g,f,c][z]
では表現できないような数が必ず存在します.
たとえば,
F(x,y,z)=x^2+2y^2+yz+4z^2
は1から30までの整数をすべて表しますが,31を表すことはできません(32は表すことができる).
ここではオイラーの素数生成式(n^2+n+41はnが0から39まですべて素数を与える)のようにうまい具合にいっている3変数2次形式を掲げましたが,正定値3変数2次形式はどれもある整数を表わすことができないのです.
===================================