■ソフトマテリアルの構築学

 ここでは,ソフトマテリアル,たとえば,多細胞からなる生体の構築の原理について考えてみる.

===================================

【1】剛性≠安定性

 ソフトマテリアルによる構築では安定性が重要になる.安定性とはリジッドな変形のしにくさがではなく,変形を食い止めるフレキシブルなメカニズムが働くことである.スローガン風に書けば,

  ハードマテリアル←→「剛性」

  ソフトマテリアル←→「剛性」よりも「柔軟性」

===================================

【2】2次元細胞による安定な平面分割

 ここではまず正多角形による平面分割の問題を掲げる.平面充填形が正三角形,正方形,正六角形の3種類に限ることは昔からよく知られているが,このうち正方形のは碁盤,正六角形のは蜂の巣などでおなじみであろう.しかし,正三角形と正方形による平面分割は頂点だけで接している多角形があるので,ボロノイ分割に対して安定とはいえない.点のわずかな動きによって,ボロノイ分割が激変してしまうからである.したがって,ボロノイ分割の意味で安定なものは六角形による平面充填(honeycomb strucure)だけということになる.

 空間分割の話にはいる前に,平面分割の幾何学的性質をもう少し調べてみよう.レンガのブロック積みを考える.3つのレンガが1点で出会うように平面を敷き詰めると,すべてのレンガは周りの6つのレンガに接することがわかる.お城の石垣でもタマネギの細胞でもこのような原則が成り立っていて,このことから平面充填図形の基本形は6角形であるといえる.6角形の1組の対辺を退化させると4角形になるが,それは6角形から2次的に派生したものと考えることができるだろう.

===================================

【3】3次元細胞による安定な空間分割

 1点に3個の多角形が会し,1本の線の周りに2個の多角形が合するというのが平面分割の局所条件であった.それでは3次元ではどうだろうか?

 1点に4個の多面体が会し,1本の線の周りに3個の多面体が合するというのが空間分割の局所条件である.多数のピンポン玉を型に詰め込んでおいて,それをぎゅっとつぶすという過程を考えてみても空間は多面体によって分割される.その際にも1点に4個の多面体が会し,1本の線の周りに3個の多面体が合する.逆にいえば,1本の辺は3個の多面体に共有され,1個の頂点は4個の多面体に共有される.これは生物であろうと無生物であろうとに関わりなく,すべて構造物について例外なく通用する物理学的な過程である.

 空間分割の局所条件は,1つの細胞のある方向の移動を他の3つの細胞が支持して止めるというメカニズムの表れと理解することができる.すなわち,このことは安定な力学的平衡が得られるための条件であることは直観的にも明らかであろう.そこで,平行多面体の場合について空間分割の局所条件を安定な空間分割という観点から考えてみることにしたい.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 立方体は単独で空間全体を格子状に埋めつくすことができる.このことはこれ以上説明するまでもないだろう.立方格子状配置,すなわち角砂糖の箱の封を切ったときに見えるパターンでは1頂点に集まる多面体の数は8個になり,空間分割の局所条件は満足されない.立方格子を作るような形の積み上げでは1つの細胞の格子線方向の移動は他の1つの細胞が支持して止めるので,ある方向に力を加えた場合に全体が変形する可能性をもっていて,力学的に不安定なのである.

 立方体以外の単一多面体による空間分割(空間充填体)としては,菱形十二面体や切頂八面体がよく知られている.両者はしばしば対比され,どちらも単独で空間充填可能な立体図形であるが,菱形十二面体が面心立方格子のボロノイ図であるのに対して,切頂八面体は体心立方格子のボロノイ図となっている.

 菱形十二面体(12面体)の頂点には3価の頂点と4価の頂点の2種類ある.3価の頂点の周りには4つの立体が出会い安定であるが,4価の頂点の周りには6つの立体が出会うため不安定となる.6角柱,長菱形12面体の場合も同様に考えることができる.

 切頂八面体(14面体)はすべての頂点に3つの辺が集まる単体的多面体である.そのため,切頂八面体が空間を合同な部分に分割する際,どの頂点でも4つの切頂八面体が出会うようになっていて,安定な空間充填多面体となる.すなわち,1点に4個の多面体が会してボロノイ分割に対して安定なものは切頂八面体だけなのであるが,立方体や菱形十二面体は切頂八面体の辺を点に縮めることによって得られるので,頂点や辺だけで接している多面体を生じるというわけである.

===================================

【4】14面体が得られる理由

 ここで14面体が得られる理由についてもう一度考えてみよう.次のような,空間分割のブロックモデルを考える.1段目を敷き詰めたあと,2段目も1段目と同じように敷き詰めるが,1段目のレンガのすべての頂点を2段目のレンガで覆うようにずらして積み重ねると,1段目のレンガの上には4つのレンガが載ることになる.3段目も同様に行うと同じ段に6,上の段に4,下の段にも4で合計14のレンガに接することになる.このことからレンガは元々14面体であって,それが普通のレンガの形に圧縮されたものと考えることができる.

 空間充填多面体のモデルとして,フェドロフの平行多面体について考えてみる.平行多面体とは辺が平行(したがって平行四辺形面,平行六辺形面に限られる),面が平行,そして平行移動するだけで3次元空間を埋めつくすことのできる単独の多面体である.平行多面体には立方体,6角柱,菱形12面体,長菱形12面体,切頂8面体の5種類しかない.これら5種類の図形(フェドロフの平行多面体)は3次元格子の幾何学的分類であって,5種類の正多面体(プラトン立体)ほどよく知られていないが,少なくとも同じ程度に重要であると考えられる.

 このうち14面多面体は切頂8面体だけであるが,切頂八面体には6組の平行な辺があり,6次元立方体と相同と考えることができる.切頂8面体(f=14,d=6)の辺を点に縮めることによって,長菱形12面体(f=12,d=5)→菱形12面体(f=12,d=4),6角柱(f=8,d=4)→立方体(f=6,d=3)ができる.すなわち,6角柱,菱形12面体は4次元立方体,長菱形12面体は5次元立方体,切頂8面体は6次元立方体を3次元空間に投影したものとなっていて,空間充填図形の基本形は切頂8面体と考えることができる所以である.

 14面体は安定な空間分割(熱力学の第2法則?)から必然的に決定されるのであって,図形の性質というよりは容れ物(空間)の性質といってもよいであろう.

===================================

【5】n次元細胞による安定な空間分割

 2次元細胞の多くは6角形であり,3次元細胞の多くには14面体であることはわかったが,4次元,5次元,・・・,n次元での空間充填多面体の基本形はどうなるのだろう? どのような形になるのかを知る人は(たとえいたとしても)非常に少ないであろう.

 答えを先にいうと安定な空間分割のためには,2(2^n−1)胞体になるのである.これはn次元細胞の決定に関与する基底ベクトルは2^n−1個あり,したがって平行多面体の面の数は最大で2(2^n−1)個であることに由来している.くどくなるので詳細な説明は差し控え,ここでは「n次元の舗石定理」をまとめておきたい.

[1]n次元空間充填では,各頂点の周りに少なくともn+1個の多面体が集まる(ルベーグ).

[2]n+1個のとき,ボロノイ細胞の面数は最大2(2^n−1)個で,安定な空間充填となる(コンウェイ).

===================================