■奇数ゼータの無理数性(その4)

 ζ(1)が発散することはオレームが,オイラーはζ(2)=π^2/6を証明した.すべての偶数sに対しζ(s)の値は無理数であるが,アペリは1979年にζ(3)が無理数であることを証明した.

  1+1/8+1/27+1/64+・・・・≠p/q

 ボイカーズ(ブーケルス)はアペリとはまったく違うアイデアを使って独自の証明を打ち出した.

 その後,2000年にリボールが無限個の奇数sに対しζ(s)が無理数であることを証明した.

 2001年にリボールはこの結果を精密化し,ζ(5)からζ(21)までの奇数sのうち少なくとも1つのsについて無理数であることを証明した.

 同年,ロシアの数学者,ズディリンはこの範囲をζ(5)からζ(11)までに狭めることに成功した.

[1]sを1より大きい奇数とすると,ζ(s+2),ζ(s+4),・・・,ζ(8s−3),ζ(8s−1)の各集合は,少なくとも1個の無理数を含む.

[2]s=3のとき,ζ(5),ζ(7),ζ(9),ζ(11)の少なくともひとつは無理数である.

 いまはさらに前に進んで切ることを期待したいが,昨年末,ζ(5)の無理性が証明されたようだというニュースが飛び込んできた.その論文は,ボイカーズによるζ(3)の無理数性の証明を一般化したものであったが,その後なしのつぶてである.

===================================

【1】ゼータ関数

 ゼータ関数

  ζ(s)=Σ1/n^s

において

 ζ(2)=1/1^2+1/2^2+1/3^2+1/4^2+・・・=π^2/6

以下,ζ(4)=π^4/90,ζ(6)=π^6/945が続きます.

 ζ(2n)はπ^2nの有理関数になる,従って,超越数であることはオイラー以来知られていますが,奇数ベキ級数の和ζ(2n+1)についての類似の関係式は何にひとつわかっていませんでした.

 つい最近までζ(3)は有理数になるかもしれないと思われていたのですが,ところが,1978年に,フランスの無名の数学者アペリによってζ(3)の無理数性が示されました.それを補ったのがポールテンです.ζ(3)=1.202056・・・に収束するものの,ごく最近までこの値が無理数であることすらわかっていなかったのです.順番が逆になりましたが,今回のコラムでは,元祖アペリ論文の要約を掲げます.

===================================

【2】ζ(3)の無理数性

 アペリはζ(3)が無理数であることを示すために,

  ζ(3)=Σ1/n^3=5/2Σ(-1)^(n-1)/n^3(2n,n)

に基づく連分数展開

  6/ζ(3)=5-1^6/(117-)2^6/(535-)n^6/(34n^3+51n^2+27n+5)-・・・

を使いました.ζ(3)が無理数ならば,連分数展開は無限列となります.

 アペリの論証は謎の二階漸化式から始まります.そして,一見すると関係なさそうな問題が,あっと驚く洞察によって,思いもよらない解き方に合体していくのです.

 アペリが行ったことは,より正確には,二階漸化式

  (n+1)^3un+1=(34n^3+51n^2+27n+5)un-n^3un-1

を満たす2つの数列{an}{bn}を構成したことです.たとえば,

  an=Σ(n,k)^2(n+k,k)^2

  a0=1,a1=5,a2=73,a4=1445,a5=33001,・・・

 bnに対する式も,より複雑ではありますが,同様に構成することができます.

  bn=Σ(n,k)^2(n+k,k)^2c

  c=Σ1/m^3+Σ(-1)^(m-1)/2m^3(m,n)(n+m,m)  

  b0=0,b1=6,b2=351/4,b4=62531/36,b5=11424695/288,・・・

 この漸化式を満たす任意の数列は,

  Cα^(±n)/n^(3/2)

  (α=17+12√2=(1+√2)^4はx^2−34x+1=0の根)

で指数的に増加(減少)することより,直ちに

  bn/an → ζ(3)

が示されます.

 このあとのアペリの証明には背理法が用いられています.

  e^3=20.08・・・,(1+√2)^4=33.97・・・

より,分母が

  (e^3/(1+√2)^4)^n→0

すなわち,ζ(3)が有理数だとすると,1より小さい正の整数ができてしまう(矛盾).

===================================

【3】ζ(2)の無理数性

 まったく同じ論法を用いて,ζ(2)の無理数性も示すことができます.

  ζ(2)=Σ1/n^2=3Σ1/n^2(2n,n)

  5/ζ(2)=3+1^4/(3+)2^4/(25+)n^4/(11n^2+11n+3)+・・・

  (n+1)^2un+1=(11n^2+11n+3)un+n^2un-1

  an=Σ(n,k)^2(n+k,k)

  bn=Σ(n,k)^2(n+k,k)^2c

  c=2Σ(-1)^(m-1)/m^2+Σ(-1)^(n+m-1)/m^2(m,n)(n+m,m)  

  α=(11+5√5)/2={(1+√5)/2}^5はx^2−11x−1=0の根(黄金比φを用いると,φ^5=3φ+2)

===================================

【4】まとめ

 興味深いのは,アペリの証明が最先端の研究結果を使ったものではなく,オイラーが解決していたとしても不思議はないとされるような200年前にはすでにわかっていた定理や手法のみでの証明だったことです.

 ζ(3)が無理数であるという証明が発表されたとき,学会場はどよめきの渦に包まれ騒然となったそうですが,アペリは非常に話し下手であり,参加者の多くは半信半疑というよりは懐疑的であったと伝えられています.ポールテンも信じていない方の聴衆のひとりでした.

 アペリはマイナーな数学者とされていますが,今から考えると当時主流だった秀才数学者集団,ブルバキに押しつぶされた個性豊かな人物だったようです.

 ζ(3)はいまだ無理数であることしかわかっておらず,オイラーによる

  ζ(3)=2π^2/7log2+16/7∫(0,π/2)xlog(sinx)dx

という結果(log2の有理式×π^2)があるばかりです(1772年) .

 いまだζ(3)が超越数であるかどうかは知られていませんし,ζ(5),ζ(7),・・・が有理数なのか無理数なのかもわかっていません.アペリの方法はζ(5),ζ(7),・・・の場合の拡張されるに至っていないのです.

 なお,ζ(2n+1)は有理数と円周率から四則演算によって得られる数ではないだろうと予想されていますが,証明されてはいません.また,log2を含むであろうと推測されています.

[補]エルデシュ数:Σ1/(k!+1)=1.526068・・・

   カタラン数 :Σ(−1)^k-1/(2k−1)^2=0.915965・・・

   オイラー数 :lim(Σ1/k−lnn)=0.577215・・・

の無理数性は依然として不明である.

===================================