■この門くぐるべからず
正五角形に対角線を描き入れると星形五角形(ソロモンの星)ができる.正五角形と星形五角形の入れ子はペンタグラムと呼ばれ,ピタゴラス派のシンボルマークであったことはよく知られている.
ピタゴラス派の校門には「幾何学を知らずしてこの門をくくるべからず」といった意味のことが記されてあったそうである.
===================================
【1】3次元立方体の投影図
ところで,3次元立方体を(1,1,1)方向に投影すると,2次元投影図は正六角形になる.
最近の若い人の中には,この図を見て「三角形が6つ合わさった形」と答える人がいるとのことである.この答えは間違いではないが,立体図形に見えないのなら少々問題があるだろう.
以下のロゴは,東北大学金属材料研究所のものであるが,川添良幸先生から聞いた話では「この六角形が立方体に見えぬ者はこの門をくぐるなかれ」といったことを意味しているそうである.
===================================
【2】4次元立方体の投影図
黄金比は正五角形と密接な関係にある.正五角形に対角線を書き入れると星形五角形できるが,この手順を繰り返すと,正五角形と星形五角形が少しずつ縮小しながら無限に入れ子状になった図形を作ることができることは前述したとおりである.
それに対して,白銀比は正八角形と密接な関係にある.正八角形に3/8角形を書き入れると正八角形できるが,この手順を繰り返すと,正八角形と星形8/3角形が少しずつ縮小しながら無限に入れ子状になった図形を作ることができる.ところで,この図形は4次元立方体の3次元投影図でもある.
3次元立方体の8つの頂点をを第4の方向に1単位だけ平行移動することにより,4次元立方体の3次元投影図を描くことができる.
以下にイメージミッション社のロゴを掲げるが,この図が何を要求しているのか,会長の前畑謙次さんに窺いたいところである.
===================================