平面図形の中で3本またはそれ以上の直線が1点で交わっていることを主張する定理が共点定理です.三角形の5心とは内心,傍心,重心,外心,垂心を指しますが,たとえば,三角形の各頂点から対辺に引いた3つの中線や垂線は1点に会するなど,三角形の5心の存在は共点定理の例となっています.
一方,3点あるいはそれ以上の点が一直線上にあることを主張する定理は共線定理と呼ばれます.たとえば,三角形の外心と重心と垂心はその順番に一直線上に並んでいて,外心と垂心を結ぶ線分が重心によって1:2に内分されています.この共線はオイラー線と呼ばれています.
三角形を定めたとき,各種共点が91点あり,それらが103本の直線(共線)に載っているという・・・実はもっと多いらしいのですが,今回のコラムでは幾何学の基本形である三角形の性質について,もう一度見直してみることにします.近年,初等幾何学(古典幾何学)の果たす役割は小さくなってきているといわれていますが,幾何学についてもう一度見直してみることは意味のあることでしょう.
[参]一松信「現代に活かす初等幾何学入門」岩波書店
===================================
【1】三角形の5心
三角形の5心とは内心,傍心,重心,外心,垂心を指しますが,内心は内角の2等分線,傍心は1内角と2外角の2等分線,重心は中線,外心は辺の垂直2等分線,垂心は頂点から対辺への垂線が1点に会した共点です.
このうち,三角形の内心は3辺への距離のうちで一番小さいものが最大となる点(マックスミニ点),外心は3頂点に至る最大距離が最小となる点(ミニマックス点)です.同様に,垂心は三角形に内接する三角形の周長が最小になる点,重心は3頂点に至る距離の2乗の和が最小となる点です.
外心と重心の中点はフォイエルバッハの9点円の中心であり,フォイエルバッハの9点円は各辺の中点,各頂点から対辺へ下ろした垂線の足,頂点と垂心の中点の9個の点を通る円となっています(1821年:ポンスレとブリアンション).
このことから,オイラー線(1767年)は外心・重心・垂心・フォイエルバッハの9点円の中心を相互に結ぶ直線ということになりますし,フォイエルバッハの9点円の中心はオイラー線の中点で,その半径は外接円の半径の半分となります.
さらに,フォイエルバッハの9点円が三角形の内接円と傍接円の各々に接する,9点円には他にも多くの特別な点が含まれているなど,三角形のような簡単な図形が無数に未知の性質を有することはまことに不思議なことです.
また,ユークリッドは3つの角を2等分することで内心を見つけたのですが,モーリーは3つの角を3等分するとどうなるかを問題にして,モーリーの定理「任意の三角形において,各内角の3等分線の隣同士の交点を結んで得られる三角形は正三角形である」を発見しました(1899年).この驚くべき基本的な定理が2000年という長い間,20世紀直前にいたるまで発見されなかった理由は角の3等分問題は解けないことが判明していたところにあるのでしょう.
===================================
【2】三角形についての公式
任意の三角形に対して
tanα+tanβ+tanγ=tanαtanβtanγ
が成り立ちます.
この式は
γ=π−(α+β)
として,tanの加法公式を用いることにより容易に証明されます.役に立つかどうかは別として,私にとってこの公式は対称性のある美しい公式と感じられるのです.もちろん,美しく感じるかどうかは主観的であり,強制すべきものではありませんが,三角形の普遍的な調和を内包しているように思えるというのがその理由です.
同様に,任意の三角形に対して
sinα+sinβ+sinγ=4cosα/2cosβ/2cosγ/2
sin2α+sin2β+sin2γ=4sinαsinβsinγ
sin3α+sin3β+sin3γ=−4cos3α/2cos3β/2cos3γ/2
cosα+cosβ+cosγ=1+4sinα/2sinβ/2sinγ/2
===================================
等式の世界も面白いのですが,不等式の世界だって奥深いものがあります.鋭角三角形ならば,算術平均≧幾何平均より
tanα+tanβ+tanγ≧33√tanαtanβtanγ
前項より,
tanαtanβtanγ≧33√tanαtanβtanγ
したがって,
tanαtanβtanγ≧√27=3√3
ですから,
tanα+tanβ+tanγ≧3√3 (等号は正三角形のとき)
を容易に証明することができます.
少し気分を変えて,次の不等式はどうでしょうか?
(問題)
sinαsinβsinγ≦3√3/8
(証明)
2sinβsinγ=cos(β−γ)−cos(β+γ)
=cos(β−γ)+cosα
sinαsinβsinγ
=1/2sinα(cos(β−γ)+cosα)
≦1/2sinα(1+cosα)
これより極大値を計算すると,3√3/8が得られます.
なお,この不等式は三角形の外接円,内接円および面積をR,r,△とすれば,
abc=4R△,
(a+b+c)r=2△
また,正弦定理
a/sinα=b/sinβ=c/sinγ=2R
より,
abc≦3√3R^3
と同値です.
===================================
【3】ヘロンの公式
任意の三角形の三辺の長さをa,b,c,面積をΔとすると,外接円の半径Rおよび内接円の半径rは
abc=4R△,
(a+b+c)r=2△
で表されますが,ここで2s=a+b+cとおくと,Δ=rs
Δ^2=s(s−a)(s−b)(s−c)
となり,おなじみの平面三角形のヘロンの公式が得られます.
ヘロンの公式は,また,
16Δ^2=(2a^2b^2+2b^2c^2+2c^2a^2−a^4−b^4−c^4) =(a+b+c)(−a+b+c)(a−b+c)(a+b−c)
とも表されます.
(問題)R≧2r 等号は正三角形のときに限る.
(証明)
外接円と内接円の中心間の距離をdとおくとき,
R^2−2Rr=d^2
が成り立っています(オイラーの定理).この関係式を導き出せば,ただちにR≧2rがわかるのですが,この関係式を導き出すことは見かけよりもやっかいで,ヘロンの公式を使ったほうがほうが簡単です.
外接円の半径Rおよび内接円の半径rをa,b,c,Δで表すと,
abc=4RΔ (正弦定理)
(a+b+c)r=2Δ (寄木細工定理)
ここで,
s1=a+b+c,
s2=ab+bc+ca,
s3=abc
とおくとき,R≧2rは
s1s3≧16Δ^2
s1^3−4s1s2+9s3≧0
と同値.
実際にやってみると
s1^3−4s1s2+9s3=1/2[(b−c)^2(b+c−a)+(c−a)^2(c+a−b)+(a−b)^2(a+b−c)]≧0
b+c−a>0,c+a−b>0,a+b−c>0ですから,等号はa=b=cのときに限ることがわかります.
===================================
一方,四角形については,プトレマイオス(トレミー)の定理「円に内接する四角形の対角線の積は,対辺の積の和に等しい」があります.
AC・BD=AB・CD+BC・DA
この定理において,もし四角形が長方形ならば
AC^2=AB^2+BC^2
となり,ピタゴラスの定理に帰着します.また,4点が同一円周上にないとき,不等式
AC・BD<AB・CD+BC・DA
が成り立ちます.
なお,円に内接する四角形では
Δ^2=(s−a)(s−b)(s−c)(s−d)
内接円と外接円の両方をもつ四角形(双心四角形)では,
2R^2(r^2+d^2)=(r^2−d^2)^2 (フースの定理)
が成り立ちます.フースは双心五角形,六角形,七角形,八角形に関する同様の公式も見つけています.
===================================
【4】空間のヘロンの公式
ところで,線分と三角形および四面体(三角錐)は,それぞれ最も簡単な1次元図形,2次元図形,3次元図形ですが,次元数nより1つ多い(n+1)個の頂点によって作られる図形をシンプレックス(単体)と呼びます.線分は1次元単体,三角形は2次元単体,三角錐は3次元単体とも呼ばれます.
この節で取り上げるのは,四面体についての問題「6辺の長さがa,b,c,d,e,fで,与えられた4面体の体積を求めよ」です.
2つのベクトルa↑,b↑を基底とする平行体(平行四辺形)の面積は,外積は
a↑×b↑
3つのベクトルa↑,b↑,c↑を基底とする平行体(平行六面体)の体積は,スカラー三重積
(a↑×b↑)・c↑
すなわち,外積a↑×b↑とベクトルc↑の内積で与えられます.
|a↑|=a,|b↑|=bとすれば,平行四辺形の面積は,
S=absinθ
ですから,
S^2=a^2b^2(1−cos^2θ)
=|a↑|^2|b↑|^2−(a↑・b↑)^2
=|a↑・a↑ a↑・b↑|
|b↑・a↑ b↑・b↑|
同様に,平行六面体の体積は
V^2=|a↑・a↑ a↑・b↑ a↑・c↑|
|b↑・a↑ b↑・b↑ b↑・c↑|
|c↑・a↑ c↑・b↑ c↑・c↑|
で与えられます.
これらのように,内積の行列式で定義される行列式をグラムの行列式(グラミアン)といいます.平行体の面積・体積はグラミアンの平方根に等しくなるというわけです.
また,座標を使って表せば,n+1個の点の座標に(1,1,1,・・・,1)を加えて作られる(n+1)次の行列式の絶対値になります.
|S|=|1 x1 y1| |V|=|1 x1 y1 z1|
|1 x2 y2| |1 x2 y2 z2|
|1 x3 y3| |1 x3 y3 z3|
|1 x4 y4 z4|
原点が含まれるときは,
|S|=|x1 y1| |V|=|x1 y1 z1|
|x2 y2| |x2 y2 z2|
|x3 y3 z3|
のように展開されます.
===================================
これらはそれぞれn次元単体の体積のn!倍になりますから,三角形面積,四面体の体積は,
S’=S/2
V’=V/6
また,4辺の長さがa,b,cで与えられた三角形,6辺の長さがa,b,c,d,e,fで与えられた四面体の場合は,
2^2(2!)^2S’^2=|0 a^2 b^2 1|
|a^2 0 c^2 1|
|b^2 c^2 0 1|
|1 1 1 0|
2^3(3!)^2V’^2=|0 a^2 b^2 c^2 1|
|a^2 0 d^2 e^2 1|
|b^2 d^2 0 f^2 1|
|c^2 e^2 f^2 0 1|
|1 1 1 1 0|
となります.
前者はおなじみの平面三角形のヘロンの公式にほかなりませんが,面積をS’=Δとして,
(4Δ)^2=2a^2b^2+2b^2c^2+2c^2a^2−a^4−b^4−c^4
=(a+b+c)(−a+b+c)(a−b+c)(a+b−c)
ここで,2s=a+b+cとおくと
Δ^2=s(s−a)(s−b)(s−c)
となり,ヘロンの公式が得られます.
後者が空間のヘロンの公式であり,V’=Δとして
(12Δ)^2=a^2d^2(b^2+c^2+e^2+f^2−a^2−d^2)
+b^2e^2(c^2+a^2+f^2+d^2−b^2−e^2)
+c^2f^2(a^2+b^2+d^2+e^2−c^2−f^2)
−a^2b^2c^2−a^2e^2f^2−d^2b^2f^2−d^2e^2c^2
一見複雑ですが,相対する線分の2乗の積に,他の線分の2乗の和から自分自身の2乗を引いた量をかけた和が
a^2d^2(b^2+c^2+e^2+f^2−a^2−d^2)
+b^2e^2(c^2+a^2+f^2+d^2−b^2−e^2)
+c^2f^2(a^2+b^2+d^2+e^2−c^2−f^2)
であり,4個の三角形の周辺3本の2乗の積の和が
a^2b^2c^2+a^2e^2f^2+d^2b^2f^2+d^2e^2c^2
です.
この公式はオイラーの公式とも呼ばれるものですが,複雑であり平面三角形のヘロンの公式のように因数分解できません.ただし,4面の面積が等しい等積四面体=4面が合同な鋭角三角形よりなる四面体(バンの定理)の場合,
72Δ^2=(−a^2+b^2+c^2)(a^2−b^2+c^2)(a^2+b^2−c^2)
と因数分解した形で表されます.
なお,三次元空間では三角形は四面体に,正方形は立方体に,正五角形は正十二面体に,円は球に拡張されると考えられます.その際,外心,内心,重心,傍心は任意の四面体に存在するのですが,垂心は必ずしも存在しません.また,三次元空間において四面体の外接球,内接球の半径をそれぞれR,rとすれば,R≧3rが成り立ちます.
n次元ではR≧nrとなるのですが,高次元の幾何学の例をもう一つあげると,三角形の面積は底辺かける高さ割る2ですが,三角錐になると底面積かける高さ割る3,四次元の三角錐なら底体積かける高さ割る4,五次元なら底四次元面積かける高さ割る5・・・.高次元の多面体ではこのようになることが知られています.
===================================
【5】フェルマー点
ユークリッドは三角形の中心と呼べる点を4つ(内心,重心,外心,垂心)知っていたらしいのですが,これ以外にも中心はいろいろあります.
微分積分の入門書に「平面上に3つの定点A,B,Cがある.この平面上に点Pをとって,AP^2+BP^2+CP^2が最小になるようにせよ」という問題が偏導関数の応用例として載せられています.その点Pは重心です.3定点が4定点であっても,同じ議論になるのですが,距離の2乗の和に特に具体的な意味があるようには思えません.むしろ,2乗を取り去ったほうが問題としては自然です.
そこで,「A,B,C3軒の家に電線をひきたい.電線の長さを最小にするにはどこの柱を立てればよいか」ではAP+BP+CPを最小にする実用価値のある問題になります.
この問題は17世紀のフランスの数学者フェルマーがイタリアの物理学者トリチェリに出題したものとして有名な問題で,求める点Pをフェルマー点といいます.点Pは三角形ABCの内部にありますが,∠A,∠B,∠C<120°のときには,3頂点に至る距離の和が最小となる点は3辺を等角120°に見込む点です.∠A,∠B,∠Cのいずれかが≧120°のときには,それぞれ頂点A,頂点B,頂点Cになります.
このフェルマー点は頂点と外正三角形の頂点を結ぶ直線の共点として得られます.すなわち,フェルマー点を見つけるには与えられた三角形の各辺の上に正三角形を立てて各頂点と結ぶと,これら3本の線は1点Fで交わり∠AFB=∠BFC=∠CFAが成り立ちます.また,フェルマー点は3つの正三角形の外接円の交点でもあります.
このような最短配線問題は最小木問題(問題の発案者シュタイナーに因んで最小シュタイナー木問題)と呼ばれていますが,VLSI回路を設計するときの最も基本的な技術となっています.
===================================
【6】ナポレオン点
数学が得意だったフランス皇帝ナポレオンが若い頃に発見したと伝えられている定理が,ナポレオンの定理「任意の三角形の各辺の外側に正三角形を作ったとき,それらの重心を結ぶと正三角形が得られる」です.
三角形の各辺の内側に正三角形を作ったときも,それらの重心を結ぶと正三角形が得られます.これらの2つの正三角形の重心は一致し,その面積の差は最初の三角形の面積に等しくなります.
ナポレオン点は,頂点と外正三角形の中心を結ぶ直線の共点として得られます.一方,第2ナポレオン点は頂点と内正三角形の中心を結ぶ直線の共点として得られます.フェルマー点・ナポレオン点・外心は同一直線上にあり,フェルマー点・第2ナポレオン点・フォイエルバッハの9点円の中心は同一直線上にあります.
===================================
【7】その他の共点・共線
[1]ド・ロンシャン点
外心に対する垂心の対称点をド・ロンシャン点と呼びます.△ABCの各頂点を通って対辺に平行な直線を引き,その交点をG,H,Iとします.△GHIを大三角形と呼ぶことにすると,両者の重心とオイラー線は一致します.もとの三角形の垂心は大三角形の外心に,外心は9点円の中心に,ド・ロンシャン点は垂心になります.
このことが3本の垂線が1点で交わる証明にもなっています.ついでながら,△ABCの各辺の中点をD,E,Fとすると,△ABCの内心は△DEFの外心となっていることを申し添えておきます.
[2]ジォルゴンヌ点とナーゲル点
△ABCの内接円が3辺に接する点をD,E,Fとすると,チェバの定理により,それと向かい合う頂点とを結ぶ3本の直線AD,BE,CFは1点で交わります.この点をジォルゴンヌ点といいます.
また,△ABCの傍接円が3辺に接する点をX,Y,Zとすると,3直線AX,BY,CZは1点で交わります.この点がナーゲル点です.
三角形ABC内の点Pに対し,AP,BP,CPの延長が対辺と交わる点をX,Y,Zとします.このとき各辺の中点に関するX,Y,Zの対称点をX’,Y’,Z’とすると,チェバの定理により3直線AX’,BY’,CZ’は1点Qで交わります.このようにしてできる2点P,Qを互いに他の等長共役点と呼びます.ジォルゴンヌ点とナーゲル点は典型的な等長共役点の例ですし,重心は自己等長共役点です.
[3]ナーゲル線
内心,重心,ナーゲル点はこの順に1直線上にあり,相互の間隔が1:2です.これはオイラー線「外心,重心,垂心がこの順に1直線上に載っていて,間隔が1:2である」ことのアナローグです.
[4]ソディー線
ジォルゴンヌ点,内心,ド・ロンシャン点は一直線上にあり,オイラー線とはド・ロンシャン点で交わります.
===================================
【8】シムソン線とデルトイド
シムソン線というのは三角形の外接円上の任意の1点から3辺(またはその延長線)に下ろした垂線の足を結ぶ直線のことで,垂線の足は一直線上に並ぶところが面白いところです.
初めてデルトイド(三星形)の研究を行ったのはオイラー(1745年)ですが,19世紀の数学者シュタイナーがシムソン線の包絡線として研究したところから,デルトイドはシュタイナーのハイポサイクロイドとも呼ばれています.
デルトイドがもつ性質のひとつは外接円さえ同じであれば,三角形の形に関係なく,同じ形のデルトイドが得られるということです.もう一つの性質はデルトイドで両端を仕切ったシムソン線の長さは一定で,その値は転円の半径をr(すなわち定円の半径を3r)とすると,4rになります.
三角形の9点円Qと同心で,半径がその3倍の定円Q’を導線として,Qを通るシムソン線(3本ある)がQ’と交わる点Sにおいて,最初Q’に接していた9点円と同大の円をQ’の内側をころがすとき,最初Sにあった点の描く軌跡がこのデルトイドです.この結果はシュタイナーが初等幾何学的に示しました.
なお,n個の尖点をもつハイポサイクロイドの定円の半径をRとした場合,ハイポサイクロイドの面積は
S=(n−1)(n−2)/n^2・πR^2
で表されます.
===================================
【9】まとめ
本稿で取り上げた三角形の面積についてのヘロンの公式はピタゴラスの定理と並ぶもう一つの古代ギリシャ(古典幾何学)の宝物といってよいと思われます.一方,オイラー線(1767年)はユークリッド,アルキメデス,ヘロンを始めとするたくさんの幾何学者が見落としていた三角形の基本的な性質ですし,1821年まで誰一人として9点を通る円の存在に気づかなかったのです.
モーリーの定理(1899年)のような基本的事実が長い間見過ごされてきたのも,角の三等分の評判があまりにも悪名高く,まともに取り上げようとする数学者が皆無だったせいなのでしょう.(しかし,角の三等分は作図できないにしても,三等分線そのものは確かに存在し別の方法を使えば作図できるのです.)
この意味で,もしギリシャ時代を幾何学の黄金期と呼ぶのであれば,オイラー以後の時代は白銀期と呼ぶのにふさわしいものです.そして,約2000年に及ぶユークリッド幾何学(放物線幾何学)の時代を経て,19世紀前半の非ユークリッド幾何学やそれとほぼ同時に開花した射影幾何学などいろいろな考えに基づく種々の幾何学が誕生しました.
最後に,三角形や円といった単純な図形の共線定理ではなく,四角形と円錐曲線の共線定理の例として,パスカルの定理とニュートンの定理を紹介します.パスカルもニュートンも,少年時代はみんなパズルずきの幾何少年だったに違いありません.
[1]ニュートンの定理
四辺形ABCDの2組の対辺の延長の交点をE,F,対角線BDの中点をL,対角線ACの中点をM,線分EFの中点をNとすれば,3点L,M,Nは一直線上にある(ニュートン線).
[2]パスカルの定理
円錐曲線,すなわち楕円,双曲線,放物線に内接する任意の六角形の三組の対辺の交点は同一直線上にある.
パスカルはこの有名な定理をわずか17才の時に発見したのですが,これは射影幾何学の基本定理の一つになっています.射影幾何学とは,長さや角の大きさに無関係に,例えば,いくつかの点がある直線上にあるといった関係,射影によって不変な図形の性質,を研究する学問です.パスカルの定理の重要な系が「円錐曲線は任意の5点で一意に定まる」です.
射影平面上では,円錐曲線はただ1種類しかなく,双曲線・放物線・楕円などの区別はなく,どれも同種の曲線となります.また,射影平面上では点という語と直線という語を入れ替えても定理は成り立っています.これをポンスレーの双対原理と呼び,射影幾何学の最も美しい特質です.パスカルの定理から150年以上たって,その双対にある共点定理「円錐曲線の外接する6辺形の対角線は1点で交わる」が発見されたのですが,それがブリアンションの定理です.
===================================