■菱形多面体(その26)
(その24)(その25)では,12本星ベクトルから菱形132面体の構成を考えてみたが,両者は異なるものになった.
たとえば,正20面体の10本星と正12面体の6本星の混合からは16次元超立方体の3次元への射影となる菱形多面体が得られるが,10本星ベクトルと6本星ベクトルの長さの比(混合比)を変えると,得られる多面体は菱形90面体から菱形30面体へと連続的に変化する.
しかし,この場合,12本星ベクトルの長さは等しくとってあるから,両者の違いは混合比に基づくものではなく,ベクトルの向きの違いにによっていると理解される.
===================================
ちなみに,論文
Derivation of Some Equilateral Zonohedra and Star Zonoherra
T. Watanabe and T. Betsumiya
Research of Pattern Formation, p55-62
にある図形の混合は,
[1]正四面体(または立方体)の4本星からは菱形12面体が得られる(n=4)
[2]正八面体の3本星からは立方体が得られる(n=3)
[3]正20面体の6本星からは菱形30面体が得られる(n=6)
[4]立方八面体の6本星からは切頂八面体が得られる(n=6).
[5]正8面体の3本星と立方体の4本星からは切頂菱形12面体(切稜立方体)が得られる(n=7)
[6]正8面体の3本星と立方八面体の6本星からは大菱形立方八面体が得られる(n=9)
[7]正12面体の10本星からは菱形90面体が得られる(n=10)
[8]立方体の3本星と立方八面体の6本星からは小菱形切頂八面体が得られる(n=10)
[9]切頂4面体の12本星と小菱形立方八面体の12本星からは菱形132面体(T)が得られる(n=12)
[10]切頂立方体の12本星からは菱形132面体(C)が得られる(n=12)
[11]切頂八面体の12本星からは菱形102面体が得られる(n=12)
[12]正八面体の4本星と立方体の4本星と立方八面体の6本星からは大菱形切頂八面体が得られる(n=13)
[13]20・12面体の15本星からは大菱形20・12面体が得られる(n=15)
[14]正20面体の6本星と正12面体の10本星からは大菱形90面体が得られる(n=16)
[14]の混合からは16次元超立方体の3次元への射影となる菱形15×16面体が得られるはずであるが,実際には菱形と八角形からなるゾーン多面体となる.この多面体は「大菱形90面体」と呼ばれていて,15×16面体ではないようである.一部が平面に縮退しているのであろう.また,[13]は
ツィーグラー「凸多面体の数学」シュプリンガー・フェアラーク東京
の表紙カバーにある置換結合多面体の図と似ているが,12角形でなく10角形である点が異なっている.
===================================