■n角の穴をあけるドリル(その57)

【1】接線極座標

 卵形線上に原点をとり,曲線上の点P(x0,y0)における接線とx軸とのなす角度をθとすると,

接線方向の単位ベクトル  : e1=(cosθ,sinθ)

それと直交する単位ベクトル: e2=(−sinθ,cosθ)

となります.

 また,接線の方程式は

  y−y0=tanθ(x−x0)

  (x−x0)sinθ−(y−y0)cosθ=0

  xsinθ−ycosθ=x0sinθ−y0cosθ=p(θ)

と表されます.このとき,右辺はベクトルPOと法線ベクトルの内積ですから,原点から接線までの距離は|p(θ)|で与えられます.

 すなわち,曲線上の点Pにおける接線に原点Oから引いた垂線の長さをp,接線とx軸とのなす角度をθとすると,

  xsinθ−ycosθ=p(θ)

と表されます.(p,θ)を接線極座標といいます.

 計算の都合上,包絡線の方程式を

  x=(n−1)acos(n−1)θ・cosθ+(asin(n−1)θ−R)・sinθ

  y=(n−1)acos(n−1)θ・sinθ−(asin(n−1)θ−R)・cosθ

とおいて

  xsinθ−ycosθ=p(θ)

に代入すると,包絡線の接線極座標における方程式は

  p(θ)=asin(n−1)θ−R

で与えられます.

===================================