■n角の穴をあけるドリル(その57)
【1】接線極座標
卵形線上に原点をとり,曲線上の点P(x0,y0)における接線とx軸とのなす角度をθとすると,
接線方向の単位ベクトル : e1=(cosθ,sinθ)
それと直交する単位ベクトル: e2=(−sinθ,cosθ)
となります.
また,接線の方程式は
y−y0=tanθ(x−x0)
(x−x0)sinθ−(y−y0)cosθ=0
xsinθ−ycosθ=x0sinθ−y0cosθ=p(θ)
と表されます.このとき,右辺はベクトルPOと法線ベクトルの内積ですから,原点から接線までの距離は|p(θ)|で与えられます.
すなわち,曲線上の点Pにおける接線に原点Oから引いた垂線の長さをp,接線とx軸とのなす角度をθとすると,
xsinθ−ycosθ=p(θ)
と表されます.(p,θ)を接線極座標といいます.
計算の都合上,包絡線の方程式を
x=(n−1)acos(n−1)θ・cosθ+(asin(n−1)θ−R)・sinθ
y=(n−1)acos(n−1)θ・sinθ−(asin(n−1)θ−R)・cosθ
とおいて
xsinθ−ycosθ=p(θ)
に代入すると,包絡線の接線極座標における方程式は
p(θ)=asin(n−1)θ−R
で与えられます.
===================================