対称式の基本定理より,n変数のどんな対称式も基本対称式を用いて表すことができる.たとえば,2変数の場合,
α1^2+α2^2=(α1+α2)^2−2α1α2
α1^3+α2^3=(α1+α2)^3−3(α1+α2)α1α2
α1^2α2+α1α2^2=(α1+α2)α1α2
など.
===================================
【1】ニュートンの定理
次に,n変数対称式:
pj=α1^j+α2^j+・・・+αn^j
を基本対称式:
σ1=α1+・・・+αn
σ2=α1α2+・・・+αn-1αn
σ3=α1α2α3+・・・+αn-2αn-1αn
・・・・・・・・・・・・・・・・・・・
σn=α1α2α3・・・αn
を用いて表してみることにしよう.
f(t)=Π(1+tαi)=1+σ1t+σ2t^2+・・・+σnt^n
とおくと,
f'(t)/f(t)=d/dtlogf(t)=Σαi/(1+tαi)=ΣΣ(-1)^kαi^(k+1)t^k
=Σ(-1)^kp(k+1)t^k
ゆえに,
f’(t)=f(t)Σ(-1)^kp(k+1)t^k
となり,
σ1+2σ2t+・・・+nσnt^(n-1)
=(1+σ1t+σ2t^2+・・・+σnt^n)(p1−p2t+p3t^2−・・・)
両辺の係数を比較することによって,順次
p1=σ1
p2=σ1p1−2σ2
p3=σ1p2−σ2p1+3σ3
・・・・・・・・・・・・・・・・・・
p(k+1)=σ1pk−σ2p(k-1)+・・・+(-1)^(k-1)σkp1+(-1)^k(k+1)σ(k+1)
が得られる.このことから「α1,α2,・・・,αnの基本対称式は,累乗和:α1^j+α2^j+・・・+αn^jの有理数を係数とする整式で表される」という結果が導き出される(ニュートンの定理).
===================================
ここで述べた定理はニュートンに拠るとされるものであるが,このことから逆に,n次方程式:
f(x)=x^n+a1x^(n-1)+・・・+an=Π(x−αi)=0
が与えられたとき,累乗和
p1=α1+・・・+αn
p2=α1^2+α2^2+・・・+αn^2
・・・・・・・・・・・・・・・・・・
pn=α1^n+α2^n+・・・+αn^n
を根とする方程式の係数を導出することができる.したがって,もし係数a1,・・・,anがすべて有理数(整数)なら,求める方程式の係数もまたみな有理数(整数)となる.
アーベルは「ニュートンの定理」を援用して方程式論を形成したことになるといえるだろう.アーベルは5次以上の一般代数方程式がベキ根によっては解けない(5次以上の方程式には,係数の間の四則と累乗根を使って表す根の公式はない)ことを初めて証明したノルウェーの数学者である.
===================================
【2】もうひとつのニュートンの定理
r次の基本対称式(の総和)σrについては,不等式
σr-1σr+1≦σr^2 (1<=r<n)
が成り立つことが知られている.
また,
Π(1+tαi)=1+σ1t+σ2t^2+・・・+σnt^n
=1+nC1c1t+nC2c2t^2+・・・+σnt^n
と表すと,
cr=σn/nCr
すなわち,r次の基本対称式の平均である.
crは
σr-1σr+1≦σr^2 (1<=r<n)
よりも強い,次のような不等式を満たす.
(1):cr-1cr+1≦cr^2 (1<=r<n) (ニュートンの定理)
(2):c1≧c2^(1/2)≧c3^(1/3)≧・・・≧cn^(1/n)
===================================