■平行体の体積とグラミアン(その46)

 合同な菱形だけでできている菱形多面体を考えます.菱形のすべての稜は2方向,菱形六面体のすべての稜は3方向,菱形十二面体では4方向,菱形三十面体では6方向を向いているのですが,菱形二十面体では5方向,菱形十二面体(第2種)では4方向を向いています.一般にすべての稜がn方向を向くとき,面数はf=n(n−1)となります.

 菱形多面体の求積についても,ゾーン多面体として計算することにします.

===================================

【1】黄金菱形多面体

 黄金菱形平行6面体には2種類(太った菱面体とやせた菱面体)あって,細めで尖ったほうがacute(扁長菱面体),太めで平たいほうがobtuse(扁平菱面体)と呼ばれていますが,2つずつacute とobtuse が集まれば菱形十二面体(第2種),5つずつ集まれば菱形二十面体,10個ずつ集まれば菱形三十面体となります.このうち,菱形二十面体と菱形三十面体は5重の対称軸をもっています.

 これらはコクセターにより,A6(acute),O6(obtuse),B12(Bilinsky),F20(Fedrov),K30(Kepler)と名づけられていて,それぞれ3次元から6次元までの立方体の投影の外殻になっています.すなわち,黄金平行多面体は5種類あり,黄金菱形をある方向に平行移動させたものがA6,O6であり,それをさらに平行移動させるとB12が,続いてF20が,最後にK30が生まれます.

 したがって,A6とO6は3次元の,B12は4次元の,F20は5次元の,K30は6次元の立方体とそれぞれ同等になります.また,B12の中には2つずつのA6とO6が,F20の中にはひとつのB12と3つずつのA6とO6が(いいかえればF20の中には5つずつのA6とO6が),K30の中にはひとつのF20と5つずつのA6とO6が(いいかえればK30の中には10個ずつのA6とO6が)それぞれ入っていることになります.

 菱形三十面体からあるゾーン(菱形の連なった帯)を抜き取って押しつぶすと菱形二十面体,菱形二十面体からあるゾーンを抜くと菱形十二面体(第2種)になるので,これらは各面の対角線の長さの比が黄金比の菱形からなる一連の多面体と考えることができます.

===================================

【2】菱形30面体の計量

 菱形30面体は黄金菱形5枚からなるサクラの花を作り,それを正12面体の各面に貼り合わせます.そして,正12面体の各辺を黄金菱形で覆った形をしています.そこで,

  サクラの花の中心をA(0,0,h)

  黄金菱形の頂点をB(τ,0,−h)

  正12面体の正5角形面の頂点を

   C(τ/2,τ/2tanπ/5,0)

   D(τ/2,−τ/2tanπ/5,0)

とパラメトライズします.

 ピタゴラスの定理より,

  (τ/2)^2+h^2=(τ^2/2tanπ/5)^2

  h^2=(τ^2/2tanπ/5)^2−(τ/2)^2=(τ/2)^2{(τtanπ/5)^2−1}=1/4

  h=1/2

 これより,

  v1(τ/2,τ/2tanπ/5,1/2)

  v2(τ/2secπ/5cos3π/5,τ/2secπ/5sin3π/5,1/2)

  v3(−τ/2secπ/5,0,1/2)

  v4(τ/2secπ/5cos7π/5,τ/2secπ/5sin7π/5,1/2)

  v5(τ/2,−τ/2tanπ/5,1/2)

  v6(0,0,1)

をそれぞれノルムで割って規格化したものから3つ選ぶ,すなわち(6,3)個の項をもつ.

 菱形二十面体については,

  v1(τ/2,τ/2tanπ/5,1/2)

  v2(τ/2secπ/5cos3π/5,τ/2secπ/5sin3π/5,1/2)

  v3(−τ/2secπ/5,0,1/2)

  v4(τ/2secπ/5cos7π/5,τ/2secπ/5sin7π/5,1/2)

  v5(τ/2,−τ/2tanπ/5,1/2)

をそれぞれノルムで割って規格化したものから3つ選ぶ,すなわち(5,3)個の項をもつ.

 菱形十二面体(第2種)については,

  v1(τ/2,τ/2tanπ/5,1/2)

  v2(τ/2secπ/5cos3π/5,τ/2secπ/5sin3π/5,1/2)

  v3(−τ/2secπ/5,0,1/2)

  v4(τ/2secπ/5cos7π/5,τ/2secπ/5sin7π/5,1/2)

をそれぞれノルムで割って規格化したものから3つ選ぶ,すなわち(4,3)個の項をもつ.

 菱形六面体については,

  v1(τ/2,τ/2tanπ/5,1/2)

  v2(τ/2secπ/5cos3π/5,τ/2secπ/5sin3π/5,1/2)

  v3(−τ/2secπ/5,0,1/2)

をそれぞれノルムで割って規格化したものから3つ選ぶ,すなわち(3,3)個の項をもつ.

===================================