【1】ロジャース・ラマヌジャン恒等式
ヤコビの3重積公式はテータ関数そのものを表しているのであって,これから
Σ(-1)^n・q^(n^2)=(q;q)∞/(-q;q)∞
Σq^(n(n+1)/2)=(q^2;q^2)∞/(q;q^2)∞
Σq^(k^2)/(q;q)k=1/(q;q^5)∞(q^4;q^5)∞
Σq^(k(k+1))/(q;q)k=1/(q^2;q^5)∞(q^3;q^5)∞
Σq^(k^2)/(q;q)2k=1/(q;q^2)∞(q^4;q^20)∞(q^16;q^20)∞
Σq^(k(k+2))/(q;q)2k+1=1/(q;q^2)∞(q^8;q^20)∞(q^12;q^20)∞
Σq^(k^2)/(q;q)k(q;q)n-k=Σ(-1)^k・q^{(5k^2-k)/2}/(q;q)n-k(q;q)n+k
Σ2q^(k^2)/(q;q)k(q;q)n-k=Σ(-1)^k・(1+q^k)q^{(5k^2-k)/2}/(q;q)n-k(q;q)n+k
などの恒等式が得られる.
このうち,後6者のq恒等式
Σq^(k^2)/(q;q)k=1/(q;q^5)∞(q^4;q^5)∞ (第1恒等式)
Σq^(k(k+1))/(q;q)k=1/(q^2;q^5)∞(q^3;q^5)∞ (第2恒等式)
Σq^(k^2)/(q;q)2k=1/(q;q^2)∞(q^4;q^20)∞(q^16;q^20)∞
Σq^(k(k+2))/(q;q)2k+1=1/(q;q^2)∞(q^8;q^20)∞(q^12;q^20)∞
Σq^(k^2)/(q;q)k(q;q)n-k=Σ(-1)^k・q^{(5k^2-k)/2}/(q;q)n-k(q;q)n+k
Σ2q^(k^2)/(q;q)k(q;q)n-k=Σ(-1)^k・(1+q^k)q^{(5k^2-k)/2}/(q;q)n-k(q;q)n+k
はロジャース・ラマヌジャン恒等式と呼ばれるものの例である.
===================================
【2】オイラーの5角数公式,ヤコビの3角数公式の一般化
Π(1-q^n)=Σ(-1)^m・q^(m(3m+1)/2) (オイラーの5角数定理)
Π(1-q^n)^3=Σ(-1)^m(2m+1)q^((m^2+m)/2) (ヤコビの3角数定理)
一般に,正の整数cに対して
Π(1-q^n)^c=Σamq^m
を求めることは数学者の興味をかきたててきた.オイラー(c=1),ヤコビ(c=3),ロジャース,ヘッケ(c=2),ラマヌジャン(c=4,6,8),アトキンス(c=10,14,26),ダイソン(c=3,8,10,14,15,21,24,26,・・・)
マクドナルドは1972年に
c=n^2+2n
c=2n^2+n
c=2n^2−n
に対する一般公式,および,c=14,52,78,133,248に対する公式を発見した.
ロジャース,ヘッケ(c=2),ラマヌジャン(c=4),アトキンス(c=26)はマクドナルドの公式に含まれていないことを注意.この分野の研究はいまでも続いている.
===================================