■分割関数のm角数等式(その3)

【1】アダマール行列

 アダマール行列Hnは+1か−1の要素をもつn×n行列で,その行と列は互いに直交している.各行または列のノルム(各要素の2乗和)はnであるから,  HnHn’=Hn’Hn=nIn

が成り立つ.

 最も簡単なアダマール行列は

  H2 =[1, 1]

     [1,−1]

である.すべての他のアダマール行列はn=4kであることが必要である.

 とくに興味深いのは「直積」

  H4=H2×H2,H8=H2×H2×H2,・・・

によって,H2から得られるn=2^mのシルベスタ型のアダマール行列で,

     [1, 1, 1, 1]

  H4 =[1,−1, 1,−1]

     [1, 1,−1,−1]

     [1,−1,−1, 1]

     [1, 1, 1, 1, 1, 1, 1, 1]

     [1,−1, 1,−1, 1,−1, 1,−1]

     [1, 1,−1,−1, 1, 1,−1,−1]

  H8 =[1,−1,−1, 1, 1,−1,−1, 1]

     [1, 1, 1, 1,−1,−1,−1,−1]

     [1,−1, 1,−1,−1, 1,−1, 1]

     [1, 1,−1,−1,−1,−1, 1, 1]

     [1,−1,−1, 1,−1, 1, 1,−1]

===================================

【2】アダマールの定理

  det|nIn|=n^n

より

  det|Hn|=n^n/2

であるが,もっと一般に,各成分が1か−1のn×n行列の行列式はn^n/2以下である.

 アダマールの定理の証明は,行列式の幾何学的意味を理解すれば簡単である.行列式の絶対値は,n個のそれぞれの長さ√nの行ベクトルが作るn次元平行六面体の体積だから,その値は(√n)^n=n^n/2以下である.等号はベクトル同士が全部直交するときに限る.

===================================

【3】アダマール行列の応用

 アダマール行列は,FFT(高速フーリエ変換)の基本原理とも関係している.

    [1, 1, 1, 1]

  A=[1, 1,−1,−1]

    [1,−1, 1,−1]

    [1,−1,−1, 1]

    [u1]    [v1]     [u1’]     [v1’]

  u=[u2]  v=[v2]  u’=[u2’]  v’=[v2’]

    [u3]    [v3]     [u3’]     [v3’]

    [u4]    [v4]     [u4’]     [v4’]

とおく.

  AA’=A’A=4I4

が成り立つ.I4は4次の単位行列で,1/2Aは直交行列である.

  u’=1/2Au,v’=1/2Av

とおく.具体的には

  u1’=1/2(u1+u2+u3+u4)

  u2’=1/2(u1+u2−u3−u4)

  u3’=1/2(u1−u2+u3−u4)

  u4’=1/2(u1−u2−u3−u4)

  v1’=1/2(v1+v2+v3+v4)

  v2’=1/2(v1+v2−v3−v4)

  v3’=1/2(v1−v2+v3−v4)

  v4’=1/2(v1−v2−v3−v4)

である.

 このとき,

  Σu’v’=Σuv

が成立する.

 これより,リーマンのテータ公式

  Πθ00(xi)+Πθ01(xi)+Πθ10(xi)+Πθ11(xi)=2Πθ00(yi)

が得られる.

===================================

【4】ヤコビの3重積公式

 さらに,テータ関数の無限積表示は

  θ(z,τ)=Π(1−e(mτ))p(z,τ)

と書ける.

 ここで,

  (a;q)n=(1-a)(1-aq)・・・(1-aq^(n-1))=Π(1-aq^k)

なる記号を導入すると

  (q;q)n=(1-q)(1-q^2)・・・(1-q^n)=Π(1-q^k)

になるが,ヤコビの3重積公式

  Σz^nq^(n(n+1)/2)=Π(1-q^n)(1+zq^n)(1+z^(-1)q^(n-1))

  (x;q)∞(q/x;q)∞(q;q)∞=Σ(-1)^m・q^(m(m-1)/2)・x^m x=-z

と表現される.ヤコビの3重積公式はテータ関数そのものを表している.

[1]ヤコビの3重積公式において,qをすべてq^3に置き換え,x=qとすれば,左辺はΠ(1-q^3n)(1-q^3n-1)(1-q^3n-2)=Π(1-q^n)=(q;q)∞となり,

  Π(1-q^n)=Σ(-1)^m・q^(m(3m+1)/2)   (オイラーの5角数定理)

と表される.

 オイラーは

(1)nが五角数でない限り,正の整数nを偶数個の異なる正の整数の和で表す方法の総数と奇数個の異なる正の整数の和で表す方法の総数が等しいこと,

(2)nが五角数ならば,正の整数nを偶数個の異なる正の整数の和で表す方法の総数−奇数個の異なる正の整数の和で表す方法の総数=(−1)^k,n=k(3k+1)/2

を示したことになる.

[2]また,qをすべてq^2に置き換え,x=qとすれば,左辺は

  Π(1-q^2n)(1-q^2n-1)^2

ここで,異なる数への分割と奇数への分割が同数あるという結果に対応する

  Π(1-q^2n-1)=Π1/(1+q^n)

より,

  Π(1-q^n)/(1+q^n)=Σ(-1)^m・q^(m^2)  (ガウスの4角数定理)

[3]今度はx=−qとすれば,(-1;q)∞=2Π(1+q^n)より,左辺は

  2Π(1-q^2n)(1+q^n-1)=2Π(1-q^2n)/(1-q^2n-1)

右辺はΣ(-∞~∞)q^(m(m+1)/2)であるが,m(m+1)/2はm=-1/2について対称であるから和を取る範囲をm:-∞~∞からm:0~∞に狭めることができて

  Σ(-∞~∞)q^(m(m+1)/2)=2Σ(0~∞)q^(m(m+1)/2)

これより

  Π(1-q^2n)/(1-q^2n-1)=Σq^(m(m+1)/2)  m:0~∞   (ガウスの3角数定理)

[4]x=δとすれば,

  (x;q)∞(q/x;q)∞(q;q)∞=(1-δ)(δq;q)∞(q/δ;q)∞(q;q)∞

  Σ(-1)^m・q^(m(m-1)/2)・x^m=Σ(1~∞)(-1)^m・q^(m(m-1)/2)・(δ^m-δ^-m+1)=Σ(0~∞)(-1)^m+1・q^(m(m+1)/2)・δ^-m(δ^2m+1-1)

両辺を(1-δ)で割り,δ→1とすれば,

  左辺→Π(1-q^n)^3

  右辺→Σ(0~∞)(-1)^m-1・(2m+1)q^(m(m+1)/2)

より,

  Π(1-q^n)^3=Σ(-1)^m(2m+1)q^((m^2+m)/2)   (ヤコビの3角数定理)

[5]三角数等式

 ヤコビの三重積公式

  Σz^nq^(n(n+1)/2)=Π(1-q^n)(1+zq^n)(1+z^(-1)q^(n-1))

において,z=1とすれば,

  Σq^(n(n+1)/2)=Π(1-q^2n)(1+q^(n-1))

が得られる.ここで,右辺が第0項から始まるようにパラメータをずらすと,

  Π(1+q^n)(1-q^2n+2)=Σq^(m(m+1)/2)  m:-∞~∞

[6]七角数等式

 qをすべてq^5に置き換え,z=−1/qとすれば,

  Σ(-1)^mq^(m(5m+3)/2)=Π(1-q^5n)(1-q^5n-1)(1-q^5n-4)

が得られる.ここで,右辺が第0項から始まるようにパラメータをずらすと,

  Π(1-q^5n+1)(1-q^5n+4)(1-q^5n+5)=Σ(-1)^mq^(m(5m+3)/2)  m:-∞~∞

[7]m角数等式

 qをすべてq^m-2に置き換え,z=−1/qとすれば,

  Σ(-1)^nq^(n((m-2)n+m-4)/2)=Π(1-q^(m-2)n)(1-q^(m-2)n-1)(1-q^(m-2)n+1)

が得られる.ここで,右辺が第0項から始まるようにパラメータをずらすと,

  Π(1-q^(m-2)(n+1))(1-q^(m-2)(n+1)-1)(1-q^(m-2)(n+1)+1)=Σ(-1)^nq^(n((m-2)n+m-4)/2)  m:-∞~∞

===================================