■平行体の体積とグラミアン(その27)

  aj=√(1/2j(j+1))

  xj/aj=yj,y0=1,yn=0

とおく.

  1/aj-1^2+1/aj^2=2(j−1)j+2j(j+1)=(2j)^2

より

  (yj-1−yj)/(1/aj-1^2+1/aj^2)^1/2=(yj−yj+1)/(1/aj^2+1/aj+1^2)^1/2

  (yj-1−yj)/2j=(yj−yj+1)/2(j+1)

となる.

  (y0−y1)=(y1−y2)/2=(y2−y3)/3=・・・=(yn-2−yn-1)/(n−1)=(yn-1−yn)/n

  2(y0−y1)=(y1−y2)

  3(y1−y2)=2(y2−y3)

  4(y2−y3)=3(y3−y4)

  ・・・・・・・・・・・・・・・

  (n−1)(yn-3−yn-2)=(n−2)(yn-2−yn-1)

  n(yn-2−yn-1)=(n−1)(yn-1−yn)

 第x行まで足しあわせて整理すると

  2(y0−yn-1)=(n−1)(yn-1−yn)→yn-1=(2y0+(n−1)yn)/(n+1)

  2(y0−yn-2)=(n−2)(yn-2−yn-1)→yn-2=(2y0+(n−2)yn-1)/n

  ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

  2(y0−y2)=2(y2−y3)→y2=(2y0+2y3)/4

  2(y0−y1)=(y1−y2)→y1=(2y0+y2)/3

 具体的には

  yn-1=2/(n+1)

  yn-2=(2+2(n−2)/(n+1))/n=2(2n−1)/n(n+1)

  yn-3=2(1+(n−3)(2n−1)/n(n+1))/(n−1)=2(2n−1)/n(n+1)=6(n−1)/n(n+1)

となるが,

  yj=(2+jyj+1)/(j+2)

のままにしておく.ともあれ,これで置換多面体の体積計算の基点だけは求まったことになる.

===================================