【1】三角形
最初に,三角形に関する演習問題を提示しておきます.
a)任意の三角形の三辺の長さをa,b,c,面積をΔとする.外接円の半径Rおよび内接円の半径rをa,b,c,Δで表せ.また,与えられた三角形が直角三角形のときのR,rをa,b,cの一次式で表せ.
(ヒント)正弦定理
b)R≧2rを証明せよ.等号が成り立つのはどのようなときか.
(ヒント)外接円と内接円の中心間の距離をdとおくとき,R^2−2Rr=d^2が成り立っています(オイラーの定理).この関係式を導き出せば,ただちにR≧2rがわかるのですが,この関係式を導き出すことは見かけよりもやっかいで,ヘロンの公式を使ったほうがほうが簡単です.
ヘロンの公式とは,余弦定理により
Δ^2=(2a^2b^2+2b^2c^2+2c^2a^2−a^4−b^4−c^4)/16
=(a+b+c)(−a+b+c)(a−b+c)(a+b−c)/16
ここで,2s=a+b+cとおくと
Δ^2=s(s−a)(s−b)(s−c)
となり,おなじみの平面三角形のヘロンの公式が得られます.
c)6辺の長さがa,b,c,d,e,fで,与えられた4面体に外接,内接する球面の半径を求めよ.
(ヒント)6辺の長さがわかっている四面体の体積は,ケーリー・メンガー行列式Mから求められる.G=XX^t(グラミアン)とすると,G=1/8・det|M|.四面体の体積は平行六面体の1/6であるから
V^2=1/288・det|M|
===================================
【2】四角形のヘロンの公式
四角形の4辺の長さをa,b,c,d,内角をα,β,γ,δとする.ここで,2s=a+b+cとおくと,四角形の面積は
S^2=(s−a)(s−b)(s−c)(s−d)−abcd(1+cos(β+δ))/2
となる.
この定理でd→0とすると,三角形のヘロンの公式
Δ^2=s(s−a)(s−b)(s−c)
が得られる.
また,四角形が円に内接するとき,β+δ=π,cos(β+δ)=−1より,面積は最大となり
S^2=(s−a)(s−b)(s−c)(s−d)
が成り立つ.
===================================
【3】オイラーの四面体公式(空間のヘロンの公式)
この節で取り上げるのは,四面体についてのオイラーの問題「6辺の長さがa,b,c,d,e,fで,与えられた4面体の体積を求めよ」です.
2つのベクトルa↑,b↑を基底とする平行体(平行四辺形)の面積は,外積は
a↑×b↑
3つのベクトルa↑,b↑,c↑を基底とする平行体(平行六面体)の体積は,スカラー三重積
(a↑×b↑)・c↑
すなわち,外積a↑×b↑とベクトルc↑の内積で与えられます.
|a↑|=a,|b↑|=bとすれば,平行四辺形の面積は,
S=absinθ
ですから,
S^2=a^2b^2(1−cos^2θ)
=|a↑|^2|b↑|^2−(a↑・b↑)^2
=|a↑・a↑ a↑・b↑|
|b↑・a↑ b↑・b↑|
同様に,平行六面体の体積は
V^2=|a↑・a↑ a↑・b↑ a↑・c↑|
|b↑・a↑ b↑・b↑ b↑・c↑|
|c↑・a↑ c↑・b↑ c↑・c↑|
で与えられます.
これらのように,内積の行列式で定義される行列式をグラムの行列式(グラミアン)といいます.平行体の面積・体積はグラミアンの平方根に等しくなるというわけです.
また,座標を使って表せば,n+1個の点の座標に(1,1,1,・・・,1)を加えて作られる(n+1)次の行列式の絶対値になります.
|S|=|1 x1 y1| |V|=|1 x1 y1 z1|
|1 x2 y2| |1 x2 y2 z2|
|1 x3 y3| |1 x3 y3 z3|
|1 x4 y4 z4|
原点が含まれるときは,
|S|=|x1 y1| |V|=|x1 y1 z1|
|x2 y2| |x2 y2 z2|
|x3 y3 z3|
のように展開されます.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
これらはそれぞれn次元単体の体積のn!倍になりますから,三角形の面積,四面体の体積は,
S’=S/2
V’=V/6
また,4辺の長さがa,b,cで与えられた三角形,6辺の長さがa,b,c,d,e,fで与えられた四面体の場合は,
2^2(2!)^2S’^2=|0 a^2 b^2 1|
|a^2 0 c^2 1|
|b^2 c^2 0 1|
|1 1 1 0|
2^3(3!)^2V’^2=|0 a^2 b^2 c^2 1|
|a^2 0 d^2 e^2 1|
|b^2 d^2 0 f^2 1|
|c^2 e^2 f^2 0 1|
|1 1 1 1 0|
となります.
前者はおなじみの平面三角形のヘロンの公式にほかなりませんが,面積をS’=Δとして,
(4Δ)^2=2a^2b^2+2b^2c^2+2c^2a^2−a^4−b^4−c^4
=(a+b+c)(−a+b+c)(a−b+c)(a+b−c)
ここで,2s=a+b+cとおくと
Δ^2=s(s−a)(s−b)(s−c)
となり,ヘロンの公式が得られます.
後者が空間のヘロンの公式であり,V’=Δとして
(12Δ)^2=a^2d^2(b^2+c^2+e^2+f^2−a^2−d^2)
+b^2e^2(c^2+a^2+f^2+d^2−b^2−e^2)
+c^2f^2(a^2+b^2+d^2+e^2−c^2−f^2)
−a^2b^2c^2−a^2e^2f^2−d^2b^2f^2−d^2e^2c^2
この空間のヘロンの公式は,オイラーの公式と呼ばれるものですが,
(12×体積)^2=六斜術の両辺の差
に等しいということを主張しています.点Pが平面三角形ABCの平面上になく,4点が四面体の頂点をなすときの四面体の体積公式ですから,六斜術は四面体が平面上に退化して体積が0になった極限と解釈することができます.
オイラーの公式は複雑であり,平面三角形のヘロンの公式のように因数分解できません.ただし,4面の面積が等しい等積四面体=4面が合同な鋭角三角形よりなる四面体(バンの定理)の場合,
72Δ^2=(−a^2+b^2+c^2)(a^2−b^2+c^2)(a^2+b^2−c^2)
と因数分解した形で表されます.
===================================