任意の近似正n角形の作図について考えてみよう.円Oに内接する近似正n角形の作図の手順は
[1]直径ABを引く
[2]直径ABをn等分し,その等分点を1,2,・・・,n−1とする
[3]ABを1辺とする正三角形の頂点となる点Cを求める
[4]点Cと点n−2を結び,その延長と円が交わる点をDとする
[5]BDが正n角形の1辺の長さとなる
点C(−√3,0),点n−2((n−4)/n,0)を結ぶ直線は
y=√3n/(n−4)・x−√3
x^2+y^2=1に代入すると
x^2+3n^2/(n−4)^2・x^2−6n/(n−4)・x+3=1
(2n^2−4n+8)x^2−3n(n−4)+(n−4)^2=0
x=(3n(n−4)+(n−4)√(n^2+16n−32))/2(2n^2−4n+8)
===================================
相対誤差を求めるには,xとcos(2π/n)の比較をすればよい.n→∞のとき,相対誤差はどのように変動するのだろうか?
x/cos(2π/n)→1
すなわち,相対誤差は0に近づくようである.かなり精確な近似作図法であることが理解される.
n x/cos(2π/n)
3 1
4 1
5 1.0025
6 1
7 .998036
8 .996724
9 .995919
10 .995468
11 .995254
12 .995195
13 .995236
14 .995338
15 .99548
16 .995643
17 .995817
18 .995994
19 .996171
20 .996344
21 .996511
22 .996672
23 .996825
24 .99697
25 .997107
26 .997237
27 .99736
28 .997476
29 .997585
30 .997688
31 .997786
32 .997877
33 .997964
34 .998046
35 .998123
36 .998196
37 .998265
38 .99833
39 .998392
40 .99845
41 .998506
42 .998558
43 .998609
44 .998656
45 .998701
46 .998744
47 .998785
48 .998825
49 .998862
50 .998897
51 .998931
52 .998964
53 .998995
54 .999024
55 .999053
56 .99908
57 .999106
58 .999131
59 .999155
60 .999178
61 .9992
62 .999221
63 .999242
64 .999261
65 .99928
66 .999298
67 .999316
68 .999333
69 .999349
70 .999364
71 .999379
72 .999394
73 .999408
74 .999422
75 .999435
76 .999448
77 .99946
78 .999472
79 .999483
80 .999494
81 .999505
82 .999516
83 .999526
84 .999535
85 .999545
86 .999554
87 .999563
88 .999572
89 .99958
90 .999588
91 .999596
92 .999604
93 .999611
94 .999619
95 .999626
96 .999633
97 .999639
98 .999646
99 .999652
100 .999658
101 .999664
102 .99967
103 .999676
104 .999682
105 .999687
106 .999692
107 .999697
108 .999702
109 .999707
110 .999712
111 .999717
112 .999721
113 .999726
114 .99973
115 .999734
116 .999738
117 .999742
118 .999746
119 .99975
120 .999754
===================================