■ペンタドロンとはなにか

 世の中には無限多くの形があるが,話を単純にするためにここでは「結晶」に限定しよう.結晶は230種類あることが知られている.空間での等長変換は平行移動,回転,並進回転,鏡映,すべり鏡映,回転鏡映,恒等変換の7種類であるから,3次元結晶群は219種類存在し,その多くが結晶構造として自然界にも存在している.結晶をテーマとする物理の本には,たいてい3次元結晶群の数は230種類存在すると書かれてあるが,変換が向きを保たないものは異なるものと数えているからである.

 230種類にせよ219種類にせよ,これでもかなりの数だが,少し目線を引いて結晶格子を遠くからみてみよう.じっと眺めていると面白い事実に気づく.いつも特定の形の凸多面体が現れるのである.ここで現れる結晶格子に対応する本質的な配置はディリクレ領域と呼ばれるものであるが,平行移動するだけで3次元空間を埋めつくすことのできる形(平行多面体)になっている.

 平行多面体についての第1の問題は,まずどれだけの種類があるかであるが,ロシアの結晶学者フェドロフによって,5種類の平行多面体−−立方体,6角柱,菱形12面体,長菱形12面体,切頂8面体−−しかないことが証明されている(1885年).これら5種類の図形は5種類の正多面体(プラトン立体)ほどよく知られていないが,少なくとも同じ程度に重要であると考えられる所以である.

 それでは第2の問題は何かというと,平行多面体元素問題

[Q]何種類か凸多面体を用いて,すべての平行多面体を作りたい.その種類の最小数は何か?  (秋山仁)

であろう.

===================================

【1】驚くべき答

[A]1種類.

 この凸5面体をペンタドロンと呼ぶことにするが,この事実の証明は非常に簡単である.実際に構成することができるからだ.しかし,ペンタドロンももつ意味は非常に深淵である.この世の中のすべての形がたった1種類の多面体から生み出されているからだ.究極の構成原理といってもよいであろう.

 今回のコラムではこれ以上追求しないことにするが,以下には実際に構成した写真を掲げることにする.

[1]立方体

[2]6角柱

[3]菱形12面体

[4]長菱形12面体

[5]切頂8面体

===================================