n番目の調和数を
Hn=1/1+1/2+1/3+1/4+・・・+1/n
と定義すると,H1=1,H2=3/2,H3=11/6,・・・,H∞=∞となります.それでは,・・・
(問)n>1ならば,Hn は整数にはならないことを示せ.
たとえば,分母が2のべき乗になっている項のうちで,その指数が最大のものを考えると,それと組になる項がどこにもありません.このことから,Hnは分子が奇数で,分母が偶数の分数になるのですが,このことをきちんとした形で書いてみましょう.
(証)2^k≦nとなる最大の指数をk,Pをn以下のすべての奇数の積とすると,
2^(k-1)PHn
=2^(k-1)P(1/1+1/2+1/3+1/4+・・・+1/n)
は,2^(k-1)P/2^k以外の項はすべて整数となる.
===================================
これに対して,別証を与えてみましょう.
(問) Hn=1/1+1/2+1/3+1/4+・・・+1/n≠整数
(別証)n未満のnにもっとも最も近い素数p(>n/2に必ずある:ベルトラン・チェビシェフの定理「nと2nの間に素数がある」)を考える.Pをp未満のすべての素数の積とすると,
PHn=p(1/1+1/2+1/3+・・・+1/p+・・・+1/n)
このとき,1/pは分母にpが残り,1/pは他に打ち消す項がないので整数になりそうもありません.nが素数ならもちろん整数でない.合成数でも奇数の素因子があれば分母に残る.これはおおざっぱですが,これを精密化すれば完全な証明になりそうです.
===================================