■ラマヌジャンの和(その6)

 ラマヌジャンの問題「2^n−7=x^2の整数解を求めよ」について,n=10^40までコンピュータ検索したが,ラマヌジャン自身が示した解

  n=3,4,5,7,15

以外の解を発見することはできなかったという.

 最近,これ以外の解はないことが証明されたのだが,今回のコラムでは符号を変えた問題

  「2^n+7=x^2の整数解をすべて求めよ」

と対比しながら,ラマヌジャンの問題について考えてみたい.

===================================

【1】2^n+7=x^2の整数解

 nが偶数の場合,与えられたディオファントス方程式は

  7=x^2−2^n=(x−2^n/2)(x+2^n/2)

のように因数分解できる.(x−2^n/2),(x+2^n/2)は7の因数であるから±1,±7でなければならない.このことから,xは奇数であることが示されるが,このアプローチではこれで精いっぱいである.

 次に

  2^n+7=x^2  (mod2)

を考えれば,

  n>0のとき,7=x^2

  n=0のとき,8=x^2

それほど悪くはないが,まだうまくいかない.

 そこで,mod2の代わりにmod4,すなわち

  2^n+7=x^2  (mod4)

を考えれば,

  n>1のとき,3=x^2

  n=1のとき,1=x^2

  n=0のとき,0=x^2

 xが偶数のとき,x=2k→x^2=4k^2

 xが奇数のとき,x=2k+1→x^2=4(k^2+k)+1

より,平方数x^2に対してはx^2=0あるいは1(mod4)でなければならない.このことはn=0か1であることを意味する.n=0はx^2=8よりNG.n=1,x=±3であることが示される.

===================================

【2】2^n−7=x^2の整数解(ラマヌジャンの問題)

  2^n−7=x^2  (mod4)

を考えれば,

  n>1のとき,1=x^2

  n=1のとき,3=x^2

  n=0のとき,2=x^2

これはn>1であることを意味するが,[1]とは違って有限個の可能性以外のすべての場合を除去することはできないのである.

===================================

【3】n!+1=x^2の整数解(エルデシュの問題)

 エルデシュの問題「n!+1=x^2の整数解を求めよ」について,エルデシュ自身は3組の解,4!+1=5^2,5!+1=11^2,7!+1=71^2しかないと予想した.現在のところ有限個の解しかないのかどうかもわかっていない.

  n!+1=x^2  (mod4)

を考えれば,

  n>3のとき,1=x^2

  n=3のとき,7=x^2

  n=2のとき,3=x^2

  n=1のとき,2=x^2

  n=0のとき,2=x^2

これはn>3であることを意味するが,この問題でも有限個の可能性以外のすべての場合を除去することはできないのである.

[補]ウィルソンの定理:(n−1)!+1はnが素数のときに限り,nの倍数である.

===================================