(その22)では,16次方程式
x^16+x^15+・・・・+x+1=0
の両辺をx^8でわり,
y=x+1/x=2cos(2π/17)
と変数変換をし,最後に2次方程式に帰着させるというストーリーを展開したが,「労多くして益なし」という笑い話に終わった.
しかし,
z=x^4+x+1/x+1/x^4
w=x^8+x^4+x^2+x+1/x+1/x^2+1/x^4+1/x^8
と変数変換する手があったようだ.
===================================
ζ=cos(2π/17)+isin(2π/17)
y=ζ+ζ^-1=2cos(2π/17)
y’=ζ^4+ζ^-4
z=ζ+ζ^4+ζ^-1+ζ^-4
z’=ζ^2+ζ^8+ζ^-2+ζ^-8
w=ζ+ζ^2+ζ^4+ζ^8+ζ^-1+ζ^-2+ζ^-4+ζ^-8
w’=ζ^3+ζ^5+ζ^6+ζ^7+ζ^-3+ζ^-5+ζ^-6+ζ^-7
とおく.
x^16+x^15+・・・・+x+1=0
より,w+w’=−1,ww’=−4となるから,wはx^2+x−4=0の根. w=(√17−1)/2=1.56155
同様に,
z+z’=w,zz’=−1となるから,zはx^2−wx−1=0の根. z=(w+√(w^2+4))/2=(−1+√17+√(34−2√17))/4=2.04948
y+y’=z,yy’=ζ^3+ζ^5+ζ^-3+ζ^-5=z”,z”’=ζ^6+ζ^7+ζ^-6+ζ^-7とおくと,
z”+z”’=w’,z”z”’=−1
となるから,z”はx^2−w’x−1=0の根.
z”=(−1−√17+√(34+2√17))/4
yはx^2−yx+y”=0の根より,
y=2cos(2π/17)=1/8{−1+√17+√(34−2√17)+2√(17+3√17+√(170−26√17)−4√(34+2√17)}=1.86494
が得られる.
===================================