(問)1つの円をn本の弦で分割する.その際,分割によってできる領域が最も多くなるようにする.最大分割領域数Snはいくつになるか?
(答)パンケーキをnスライスしたときの最大ピース数を求めよという問題ですが,この問題は実は円という条件を取り去っても同じ答えになります.すなわち,平面をn本の線で分割する.その際,分割によってできる領域が最も多くなるようにする.最大分割領域数Snはいくつになるか?
分割される領域数が最大になるためには,新しい線(弦)を引くとき,それ以前のすべての線(弦)と新しい交点で交わるようにします.既存の交点を通ると分割される領域が最大数にならないからです.
S0=1,S1=2,S2=4,S3=7
はすぐに求められます.このことからn本目の線(弦)を引くと新しい領域がn個増えることがわかります.これを式で表すと
Sn=Sn-1+n
Sn=Sn-1+n
Sn-1=Sn-2+n−1
・・・・・・・・・・
S1=S0+1
S0=1
を辺々加えると,一般式
Sn=1+(1+2+3+・・・+n)=1+n(n+1)/2
=(n^2+n+2)/2
が得られます.
S0=1,S1=2,S2=4,S3=7,
S4=11,S5=16,S6=22,S7=29,
S8=37,S9=46,S10=56,・・・
と続くというわけです.
パンケーキではなく,ケーキをnスライスしたときの最大ピース数を求めよという問題では,
Sn=(n+2)(n+3)/6
S0=1,S1=2,S2=4,S3=8,
S4=15,S5=26,S6=42,S7=64,
S8=93,S9=130,S10=176,・・・
===================================
(問)平面をn本の線で分割する.その際,分割によってできる領域が最も多くなるようにする.最大分割領域数Snはいくつになるか,の答は
Sn=1+(1+2+3+・・・+n)=1+n(n+1)/2=(n^2+n+2)/2
=(n,0)+(n,1)+(n,2)
S0=1,S1=2,S2=4,S3=7,・・・
となりましたが,
(問)空間をn枚の平面で分割する.その際,分割によってできる領域が最も多くなるようにする.最大分割領域数Snはいくつになるか,の答は
Sn=(n,0)+(n,1)+(n,2)+(n,3)=(n3+5n+6)/6
S0=1,S1=2,S2=4,S3=8,S4=15,・・・
(問)m次元空間をn枚の超平面で分割する.その際,分割によってできる領域が最も多くなるようにする.最大分割領域数Snはいくつになるか,の答は
Sn=(n,0)+(n,1)+(n,2)+(n,3)+・・・+(n,m)
となります.
===================================