■三角形のn等分(その2)

【1】三角形のn等分

[1]さらに調べてみたところ,一般に与えられた三角形の各辺をλ:1,μ:1,ν:1に分ける位置に点をとって対頂点と結んで作った三角形の面積は,もとの三角形の面積の

  M=(λμν−1)^2/(λμ+λ+1)(μν+μ+1)(νλ+ν+1)

倍に等しくなる.

 λ=μ=νの場合,

  M=(λ^3−1)^2/(λ^2+λ+1)^3=(λ−1)^3/(λ^3−1)

倍に等しくなる.λ=μ=ν=2(k=1/3)のとき1/7.

[2]与えられた三角形の各辺をλ:1,μ:1,ν:1に分ける位置に点をとって点同士を結んで作った三角形の面積は,もとの三角形の面積の

  M=(λμν+1)/(λ+1)(μ+1)(ν+1)

倍に等しくなる.

(証)1/(λ+1)・μ/(μ+1)+1/(μ+1)・ν/(ν+1)+1/(ν+1)・λ/(λ+1)=1−(λμν+1)/(λ+1)(μ+1)(ν+1)

 λ=μ=νの場合,

  M=(λ^3+1)/(λ+1)^3

倍に等しくなる.λ=μ=ν=2(k=1/3)のとき1/3.

===================================

【2】平行四辺形のn等分

 平行四辺形の頂点A,B,C,Dをそれぞれ辺BC,CD,DA,ABの中点と結んで,中央に小さい平行四辺形を作る.この小さい平行四辺形の面積は,もとの平行四辺形の面積の1/5に等しい.

 一般に与えられた平行四辺形の各辺を同じ倍率k(0<k<1)で縮めた位置に点をとって,対頂点と結んで作った平行四辺形の面積は,もとの平行四辺形の面積の

  M=(1−k)^2/(1+k^2)

倍になる.

  k=0   → M=1

  k=1/3 → M=2/5

  k=1/2 → M=1/5

  k=2/3 → M=1/13

  k=1   → M=0

 次に,平行四辺形の頂点A,B,C,Dをそれぞれ辺CD,DA,AB,BCの中点と結んでも中央に小さい平行四辺形が得られる.この小さい平行四辺形が重なった部分は点対称な8角形で,その面積はもとの平行四辺形の面積の1/6に等しい.

===================================