連分数とは,
a1/(b1+a2/(b2+a3/(b3+a4/(b4+a5/b5+・・・)
のような分数を続けた式で,実用上は最初にa0+をつけた形が使われます.整数論で使われる連分数は普通,ak=1,bkが正の整数である標準連分数です.
===================================
【1】平方根と連分数展開
連分数展開によって
(1+√5)/2=[1;1,1,1,1,1,・・・]
√2=[1;2,2,2,2,2,・・・]
のように,1や2が無限に繰り返されるという規則性を見ることができます.
√3=[1;1,2,1,2,1,2,・・・]
では交互に1,2が現れる循環連分数となります.以下,
√5=[2;4,4,4,・・・]
√6=[2;2,4,2,4,2,・・・]
√7=[2;1,1,1,4,1,1,1,4,・・・]
一般に,√mの連分数展開は循環連分数となり周期性が証明されます.これは既約分数の小数展開が循環小数になることと対比するとおもしろい事実です.
その際,
√m=[q0;q1,q2,・・・,qn-1,2q0,・・・]
という周期nの連分数展開が得られます.
√2=[1;2,・・・]
√3=[1;1,2,・・・]
√5=[2;4,・・・]
√6=[2;2,4,・・・]
√7=[2;1,1,1,4,・・・]
すなわち,どの循環節もqn=2q0=[2√m]で終わっています.
たとえば,√199の展開
√199=[14;9,2,1,2,2,5,4,1,1,13,1,1,4,5,2,2,1,2,9,28,・・・]
をみると,14で始まり28で終わるというのもこの理由によります.
このように,標準無限連分数のうち,部分分母列のあるところから先が巡回的になる循環連分数は2次の無理数(整数係数の2次方程式の解として表される数)に収束します.この性質により,整数項の標準連分数はいわゆるペル方程式:x^2−my^2=d(多くは±1,±4)の解法など整数論の分野で活用されます.
また,√199の循環節の最後の28を除くと13を中心として対称になっていることにも気付かされます.
√43=[6;1,1,3,1,5,1,3,1,1,12,・・・]
√54=[7;2,1,6,1,2,14,・・・]
√76=[8;1,2,1,1,5,4,5,1,1,2,1,16,・・・]
√94=[9;1,2,3,1,1,5,1,8,1,5,1,1,3,2,1,18,・・・]
√1000=[31;1,1,1,1,1,6,2,2,15,2,2,6,1,1,1,1,1,62,・・・]
循環部の最後の項を除いた部分は回文(前から読んでも後から読んでも同じ)になっているという事実も,199のみならず,2次の無理数√mに共通していえる性質です.
√m=[q0;q1,q2,・・,q2,q1,2q0,・・・]
なお,2次の無理数には循環連分数が対応しますが,連分数による実数の最良近似は解を下方と上方から近似していく方法であって,ユークリッドの互除法に直結しています.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
以上のことから,最も素朴な循環連分数は
√m=[q0;2q0,2q0,2q0,・・・]
で表されるものと考えられます.
このとき,
P=2q0^2+1,Q=2q0
より,mは
(2q0^2+1)^2−m・4q0^2=±1
を満たす整数となるのですが,結局,このようなmは
m=q0^2+1=2,5,10,・・・
となることが導き出されます.
√2=[1;2,2,2,・・・]
√5=[2;4,4,4,・・・]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[補]eとπの連分数展開
超越数eの連分数展開は,
e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,1,1,16,・・・]
と書け,数字の出方が自然数順になっていることがわかります.すなわち,2次の無理数のように規則的になっているわけですが,eのように超幾何関数の特殊値は3次の無理数よりも,2次の無理数に近いということなのでしょうか?
eもπも超越数ですが,しかし,πの連分数展開
π=[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,2,1,1,15,3,13,1,4,2,6,6,99,1,2,2,6,3,5,1,1,6,・・・]
にはなんの規則性も見あたらないようにみえます.πに現れる数字0〜9については,重複対数の法則と呼ばれるランダムウォークに基づく非常に厳しいランダムネス検定にも十分合格することが確かめられています.πには少なくとも何進法かの表現の下でなにか隠された未発見の規則性があるに違いないと信じている人もいますが,現在のところ,πは最も複雑な数なのです.
===================================
【2】平方根のディオファントス近似
aがx^2=2の解ならばa=2/aが成り立ちます.aがいくらか不正確,たとえば過小評価であるならば,2/aは過大評価となります.過小評価と過大評価の中間(算術平均)はaと2/aのいずれよりもよい評価となります.
かくして算術平均:
an+1=1/2(an+2/an)
によって定義される数列は√2に収束することになります.この場合,2の平方根をニュートン法x:=x-f(x)/f'(x)で求めるのと同じことになります.ニュートン法の幾何学的意味は「初期値x0における関数の勾配を求めて,接線とx軸の交点を求める.この点において,同様の作業を行うとxは順次解に近づいていく.」と解釈されます.
ここでは,これとは別の√2に収束する数列を考えることにします.まず
(1+√2)^n=an+bn√2
(1−√2)^n=an−bn√2
を満足させるような整数列{an},{bn}を考えます.これらの数列は
an^2−2bn^2=(−1)^n
となる関係式で結ばれていて,
an/bn→ √2
ですから,√2に最も近い分数を与えることがわかります(最良近似).
an+1+bn+1√2=(1+√2)^n(an+bn√2)
=(an+2bn)+(an+bn)√2
より
an+1=an+2bn,bn+1=an+bn
an+1=an+2bn=an+2(an-1+bn-1)
=an+an-1+(an-1+2bn-1)=2an+an-1
bn+1=an+bn=(an-1+2bn-1)+bn
=(an-1+bn-1)+bn+bn-1)=2bn+bn-1
より
an+1=2an+an-1,bn+1=2bn+bn-1
α,βを2次方程式x^2−2x−1=0の根1±√2として,
an+1−αan=β(an−αan-1)=β^2(an-1−αan-2)=・・・=β^(n-1)(a2−αa1)
α,βを入れ替えると
an+1−βan=α^(n-1)(a2−βa1)
an+1−αan=β^(n-1)(a2−αa1)
したがって,整数列{an}の一般項は
an={α^(n-1)(a2−βa1)−β^(n-1)(a2−αa1)}/(α−β)
α=1+√2,β=1−√2,初期値をa1=1,a2=3とすると
an=1/2{(1+√2)^n+(1−√2)^n}
整数列{bn}でも同じ漸化式ですから,同じ一般項になります.
bn={α^(n-1)(b2−βb1)−β^(n-1)(b2−αb1)}/(α−β)
初期値をb1=1,b2=2とすると
bn=1/2√2{(1+√2)^n−(1−√2)^n}
ここで,n→∞のとき(1−√2)^n→0ですから
an/bn→ √2
となるのを確かめることができます.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
同様にして,√3の最良近似では
(2+√3)^n=an+bn√3
(2−√3)^n=an−bn√3
より
an+1=4an−an-1,bn+1=4bn−bn-1
α,βを2次方程式x^2−4x+1=0の根2±√3として,初期値をa1=1,a2=2,a3=7,b1=0,b2=1,b3=4とすると
an/bn→ √3
となります.
近似分数列{an/bn}で非常によく近似できる実数αについて
|α−an/bn|<1/bn^2
が成立するならば,αは無理数です(ディリクレの定理).
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[補]eの近似分数
an+1=(4n+2)an+an-1,bn+1=(4n+2)bn+bn-1
初期値をa1=1,a2=3,a3=19,b1=1,b2=1,b3=7とすると
an/bn→ e
となります.係数は整数ではありませんが,係数が次々に大きくなるので近似速度は速くなります.
===================================