■等面単体の体積(その185)

 等面単体柱を

  A(0,0,0,0)

  B(2,0,0,a)

  C(1,2,0,b)

  D(1,0,√2,c)

  E(0,0,0,d)

としてみる.

===================================

AB^2=4+a^2

AC^2=5+b^2

AD^2=3+c^2

AE^2=d^2

BC^2=5+(a−b)^2

BD^2=3+(a−c)^2

BE^2=(a−d)^2

CD^2=6+(b−c)^2

CE^2=5+(b−d)^2

DE^2=3+(c−d)^2

 n=4のとき

  P0P1=P1P2=P2P3=P3P4=2

  P0P2=P1P3=P2P4=√6

  P0P3=P1P4=√6

  P0P4=2

であるから,

4+a^2=5+(a−b)^2=6+(b−c)^2=3+(c−d)^2=d^2

とおくと,

(a−b)^2=a^2−1

(b−c)^2=(a−b)^2−1

(c−d)^2=(b−c)^2+3

d^2=(c−d)^2+3=(b−c)^2+6=(a−b)^2+5=a^2+4

5+b^2=3+c^2=3+(a−c)^2=(a−d)^2=5+(b−d)^2=3d^2/2=3a^2/2+6

d^2=a^2+4

b^2=3a^2/2+1

c^2=3a^2/2+3

また,

3d^2=2(a−d)^2, d=kaを代入すると

3k^2=2(k−1)^2

k^2+4k−2=0,(k+2)^2=6,k=√6−2,d=(√6−2)a

(√6−2)^2a^2=a^2+4,a^2<0となりNG.

===================================