■パスカルの三角形の概3等分とヤコブスタール数(その30)

  Sn(x)=Σ(n-i,i)x^i

r={1+(1+4x)^1/2}/2

s={1+(1-4x)^1/2}/2

 Sn(x)=Σ(n-i,i)x^i={r^n+1-s^n+1}/(r-s)={r^n+1-s^n+1}/(1+4x)^1/2

===================================

x=2とおくと

  Sn(x)=Σ(n-i,i)2^i={2^n+1-(-1)^n+1}/3=Jn+1・・・ヤコブスタール数

x=-1とおくと、r=(1+i√3)/2=exp(iπ/3),s=(1-i√3)/2=exp(-iπ/3)

  Sn(x)={2sin(n+1)π/3}/√3

  =0 (n=2 mod3)

=(-1)^[n/3]それ以外

===================================