■パスカルの三角形の概3等分とヤコブスタール数(その30)
Sn(x)=Σ(n-i,i)x^i
r={1+(1+4x)^1/2}/2
s={1+(1-4x)^1/2}/2
Sn(x)=Σ(n-i,i)x^i={r^n+1-s^n+1}/(r-s)={r^n+1-s^n+1}/(1+4x)^1/2
===================================
x=2とおくと
Sn(x)=Σ(n-i,i)2^i={2^n+1-(-1)^n+1}/3=Jn+1・・・ヤコブスタール数
x=-1とおくと、r=(1+i√3)/2=exp(iπ/3),s=(1-i√3)/2=exp(-iπ/3)
Sn(x)={2sin(n+1)π/3}/√3
=0 (n=2 mod3)
=(-1)^[n/3]それ以外
===================================