■数列と全単射(その5)
ペル方程式x^2-(a^2-1)y^2=1の性質を調べよう。
===================================
{a+(a^2-1)^1/2}{a-(a^2-1)^1/2}=1
{a+(a^2-1)^1/2}^n{a-(a^2-1)^1/2}^n=1
===================================
{a+(a^2-1)^1/2}^n=xn(a)+yn(a)(a^2-1)^1/2
{a-(a^2-1)^1/2}^n=xn(a)-yn(a)(a^2-1)^1/2
xn(a)^2-(a^2-1)yn(a)^2=1
xn(1)=1,yn(1)=nと約束しておく
===================================
x0(a)=1,x1(a)=a,x2(a)=2a^2-1
y0(a)=0,y1(a)=1,y2(a)=2a
i<j,a>1のときxi(a)<xj(a), yi(a)<yj(a)
xn(a)とyn(a)は互いに素
===================================
xn+1(a)=axn(a)+(a^2-1)yn(a)
yn+1(a)=xn(a)+ayn(a)
xn+1(a)=2axn(a)-xn-1(a)
yn+1(a)=2ayn(a)-yn-1(a)
ym+n(a)=xn(a)ym(a)+xm(a)yn(a)
yn(a)|yt(a)←→n|t
yk+u(a)=-yk+u-1(a) (mod yk+yk+1)
===================================