■4乗和の公式(その38)

  z・exp(zx)/(exp(z)−1)

=(1+xz+1/2!x^2z^2+1/3!x^3z^3+・・・)(B0+B1/1!z+B2/2!z^2+B3/3!z^3+・・・)

  z・exp(z(x+1)/(exp(z)−1)

=z・exp(zx)・exp(z)/(exp(z)−1)

=z・exp(zx)/(exp(z)−1)+z・exp(zx)

 z^sの項を比較すると

  Bs(x+1)−Bs(x)=sx^s-1

  Bs+1(x+1)−Bs+1(x)=(s+1)x^s

x=0,1,2,・・・,nとして加えると

  Σk^s=1^s+2^s+3^s+・・・+n^s

=1/(s+1)・{Bs+1(n)−Bs+1(0)}+n^s

=n^s+1/(s+1)+n^s/2+(p,1)B1/2・n^s-1+(p,3)B4/4・n^s-3+・・・

===================================

exp(x)=Σx^n/n!

Σexp(kx)=ΣΣk^mx^m/m!=Σ1/m!(Σk^m)x^m=n+Σ1/m!・σ(m)x^m

σ(m)はm乗和を表している。

いっぽう、等比級数

Σexp(kx)=Σ(exp(x))^k=exp(x){exp(nx)-1)}/{exp(x)-1}

===================================

また、

xexp(x)/{exp(x)-1}=ΣBnx^n/n!

より

σ(m)=Σk^m=Σ(m,q)Bm-q/(q+1)・n^(q+1)

===================================