■φの連平方根・連立方根(その1)
√(1+a√(1+a√(1+a√(1+・・・))))
の値はという問題であれば,
x=√(1+a√(1+a√(1+a√(1+・・・))))
とおくと,
√(1+ax)=x → x^2−ax−1=0
より,
x=(a+√(a^2+4))/2
を得ることができる.
a=1のとき,
√(1+√(1+√(1+√(1+・・・))))=φ (黄金比)
k=√(m+√(m+√(m+√(m+・・・))))
の場合は,2次方程式の解の公式を使えば,m=k^2−kとすることができる.
√(2+√(2+√(2+√(2+・・・))))=2
√(30+√(30+√(30+√(30+・・・))))=6
√(1−√(1−1/2√(1−1/4√(1−1/8√1−・・・))))=1/2
3√(−6+3√(−6+3√(−6+3√(−6+・・・))))=−2
もラマヌジャンの式である.
===================================