■平方根と連分数(その78)
ペル系列としては
√40/2→2x^2-4x-3=0
√1300/12→12x^2-26x-13=0
√44104/70→70x^2-152x-75=0=0
===================================
√5/1→x^2-x-1
√8/2→x^2-2x-1
√221/5→5x^2-11x-5
√1517/13→13x^2-29x-13
√7565/29→29x^2-63x-31・・・ペル
√10400/34→17x^2-38x-17
√71285/89→89x^2-199x-89
√257045/169→169x^2-367x-181・・・ペル
√338720/194→97x^2-216x-98・・・どちらでもない
√488597/233→233x^2-521x-233
===================================
70x^2-152x-75=0=0
x={76+√ (11026)}/70+++
x=2+{-64+√ (11026)}/70
x=2+1/(70/{-64+√ (11026)})
x=2+1/({64+√ (11026)}/99)
x=2+1/(1+{-35+√ (11026)}/99)
x=2+1/(1+1/(99/{-35+√ (11026)})
x=2+1/(1+1/({35+√ (11026)}/99)
x=2+1/(1+1/(1+{-64+√ (11026)}/99)
x=2+1/(1+1/(1+1/(99/{-64+√ (11026)})
x=2+1/(1+1/(1+1/({64+√ (11026)}/70)
x=2+1/(1+1/(1+1/(2+{-76+√ (11026)}/70)---
x=2+1/(1+1/(1+1/(2+1/(70/{-76+√ (11026)})
x=2+1/(1+1/(1+1/(2+1/({76+√ (11026)}/75)
x=2+1/(1+1/(1+1/(2+1/(2+{-74+√ (11026)}/75)
x=2+1/(1+1/(1+1/(2+1/(2+1/(75/{-74+√ (11026)})
x=2+1/(1+1/(1+1/(2+1/(2+1/({74+√ (11026)}/74)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+{-74+√ (11026)}/74)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(74/{-74+√ (11026)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/({74+√ (11026)}/75))
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+{-76+√ (11026)}/75))
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(75/{-76+√ (11026)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/{76+√ (11026)}/70)++++
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+{-64+√ (11026)}/70)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(70/{-64+√ (11026)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/{64+√ (11026)})/99}
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+{-35+√ (11026)})/99}
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(99/{-35+√ (11026)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/({35+√ (11026)}/99)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+{-64+√ (11026)}/99)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(99/{-64+√ (11026)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/({64+√ (11026)}/70)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+{-76+√ (11026)}/70)------
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(70/{-76+√ (11026)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/({76+√ (11026)}/75)++++
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+{-74+√ (11026)}/75)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(75/{-74+√ (11026)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/({74+√ (11026)}/74)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+{-74+√ (11026)}/74)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(74/{-74+√ (11026))}
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/({74+√ (11026)}/75)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+{-76+√ (11026)}/75)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(75/{-76+√ (11026)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(76+√ (11026)}/70)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+{-64+√ (11026)}/70)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(70/{-64+√ (11026)}
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/({64+√ (11026)}/99)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(2+1/(1+(-35+√ (11026)}/99}
===================================
x=[2:1,1,2,2,2,2---2,1,1,1,1,2,2,2,2,・・・]={76+√ (11026)}/70
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/x)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+x/(2x+1)
x=2+1/(1+1/(1+1/(2+1/(2+(2x+1)/(5x+2))
x=2+1/(1+1/(1+1/(2+(5x+2)/(12x+5))
x=2+1/(1+1/(1+(12x+5)/(29x+12))
x=2+1/(1+(29x+12)/(41x+17))
x=2+(41x+17)/(70x+29)=(181x+75)/(70x+29)
70x^2-152x-75=0
y=[0:2,2,2,2,1,1,2,---,2,2,2,2,1,1,2
y=1/(2+1/(2+1/(2+1/x))
=1/(2+1/(2+x/(2x+1))
=1/(2+(2x+1)/(5x+2)
=(5x+2)/(12x+5)
{76+√ (11026)}/70
y=
{520+5√ (11026)}/(1262+12√ (11026)}
(520+5√ (11026)(1262-12√(11026))/(1592644-1587744)
(656240-661560+70√ (11026))/(4900)
(-5320+√ (11026))/(4900)={-76+√ (11026)}/70・・・OK
===================================