■平方根と連分数(その76)
ペル系列としては
√40/2→2x^2-4x-3=0
√1300/12→12x^2-26x-13=0
√44104/70→70x^2-152x-75=0=0
===================================
√5/1→x^2-x-1
√8/2→x^2-2x-1
√221/5→5x^2-11x-5
√1517/13→13x^2-29x-13
√7565/29→29x^2-63x-31・・・ペル
√10400/34→17x^2-38x-17
√71285/89→89x^2-199x-89
√257045/169→169x^2-367x-181・・・ペル
√338720/194→97x^2-216x-98・・・どちらでもない
√488597/233→233x^2-521x-233
===================================
2x^2-4x-3=0
x={2+√ 10}/2++
x=2+{-2+√ 10)}/2---
x=2+1/(2/{-2+√ 10)})
x=2+1/({2+√10}/3)
x=2+1/(1+{-1+√ 10)}/3)
x=2+1/(1+1/(3/{-1+√ 10})
x=2+1/(1+1/({1+√10)}/3)
x=2+1/(1+1/(1+{-2+√ 10)}/3)
x=2+1/(1+1/(1+1/(3/{-2+√10)})
x=2+1/(1+1/(1+1/({2+√10)}/2)+++
x=2+1/(1+1/(1+1/(2+{-2+√10}/2)---
x=2+1/(1+1/(1+1/(2+1/(2/{-2+√ 10)})
x=2+1/(1+1/(1+1/(2+1/({2+√ 10}/3)
x=2+1/(1+1/(1+1/(2+1/(1+{-1+√ 10)}/3)
x=2+1/(1+1/(1+1/(2+1/(1+1/(3/{-1+√ 10})
x=2+1/(1+1/(1+1/(2+1/(1+1/({1+√ (10)}/3)
===================================
x=[2:1,1,---2,1,1,--]=x={2+√ 10}/2
x=2+1/(1+1/(1+1/x))
x=2+1/(1+x/(x+1))
x=2+(x+1)/(2x+1)=(5x+3)/(2x+1)
2x^2+x=5x+3
x=2+y
y={[0:1,1,2,---1,1,2,1,1]
===================================