■平方根と連分数(その71)
λ=√(9・12・12+4)/12=√1300/12の場合を考える。
12x^2+bx+c=0
の正の解が
{-b+√(9・12・12+4)}/24であるから、
b^2-48c=1300>b^2
b,cは負数とするとc=[1,27]
b=-34,c=-3
b=-26,c=-13***
b=-22,c=-17
b=-14,c=-23
b=-10,c=-25
b=-2,c=-27
===================================
29x^2-63x-31
9a^2-4=7565
b^2-116c=7565,c=[1,65]
===================================
169x^2-367x-181
9a^2-4=257045
b^2-676c=257045,c=[1,380]
===================================
194x^2-432x-196
9a^2-4=338720
b^2-776c=338720,c=[1,436]
===================================
√5/1→x^2-x-1
√8/2→x^2-2x-1
√221/5→5x^2-11x-5
√1517/13→13x^2-29x-13
√7565/29→29x^2-63x-31・・・ペル
√10400/34→17x^2-38x-17
√71285/89→89x^2-199x-89
√257045/169→169x^2-367x-181・・・ペル
√338720/194→97x^2-216x-98・・・どちらでもない
√488597/233→233x^2-521x-233
===================================
λ>3に対して
√13/1→x^2-3x-1=0
√85/3→3x^2-7x-3=0
√580/8→8x^2-18x-8=0=0
√3973/21→21x^2-47x-21=0
√27229/55→55x^2-123x-55=0
===================================
12x^2-26x-13=0
x={+26+√ (1300)}/24+++
x=3+{-46+√ (1300)}/24・・・{-46+√ (1300)}が負になる
12x^2-22x-17=0
x={22+√ (1300)}/24+++
x=3+{-72+√ (1300)}/24・・・{-72+√ (1300)}が負になる
12x^2-34x-3=0
x={34+√ (1300)}/24+++
x=3+{-38+√ (1300)}/24・・・{-38+√ (1300)}が負になる
===================================
huninaru
x=3+1/(97/{-86+√ (1300)})
x=3+1/({86+√ (1300)}/142)
x=3+1/(1+{-56+√ (1300)}/142)
x=3+1/(1+1/(142/{-56+√ (1300)})
x=3+1/(1+1/({56+√ (1300)}/127)
x=3+1/(1+1/(1+{-71+√ (1300)}/127)
x=3+1/(1+1/(1+1/(127/{-71+√ (1300)})
x=3+1/(1+1/(1+1/({71+√ (1300)}/127)
x=3+1/(1+1/(1+1/(1+{-56+√ (1300)}/127)
x=3+1/(1+1/(1+1/(1+1/(127/{-56+√ (1300)})
x=3+1/(1+1/(1+1/(1+1/({56+√ (1300)}/142)
x=3+1/(1+1/(1+1/(1+1/(1+{-86+√ (1300)}/142)
x=3+1/(1+1/(1+1/(1+1/(1+1/(142/{-86+√ (1300)})
x=3+1/(1+1/(1+1/(1+1/(1+1/({86+√ (1300)}/97)
x=3+1/(1+1/(1+1/(1+1/(1+1/(2+{-108+√ (1300)}/97)+++
x=3+1/(1+1/(1+1/(1+1/(1+1/(2+1/(97/{-108+√ (1300)})
x=3+1/(1+1/(1+1/(1+1/(1+1/(2+1/({108+√ (1300)}/98))
x=3+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+{-88+√ (1300)}/98))
x=3+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(98/{-88+√ (1300))})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/{88+√ (21170)}/137)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+{-49+√ (21170)}/137)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(137/{-49+√(21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/{49+√ (21170)})/137}
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+{-88+√ (21170)})/137}
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(137/{-88+√ (21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/({88+√(21170)}/98)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+{-108+√(21170)}/98)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(98/{-108+√ (21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/({108+√ (21170)}/97)++++
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+{-86+√ (21170)}/97)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(97/{-86+√ (21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/({86+√(21170)}/142)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+{-56+√ (21170)}/142)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(142/{-56+√ (21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/({56+√(21170)}/127)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+{-71+√(21170)}/127)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(127/{-71+√(21170)}
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/({71+√(21170)}/127)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(1+{-56+√(21170)}/127)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(1+1/(127/{-56+√(21170)})
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(1+1/(56+√(21170)}/142)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(1+1/(1+{-86+√(21170)}/142)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(1+1/(1+1/(142/{-86+√(21170)}
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(1+1/(1+1/({86+√(21170)}/97)
x=2+1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(2+1/(2+1/(1+1/(1+1/(1+1/(1+1/(2+(-108+√(21170)}/97}+++
===================================
x=[2:1,1,1,1,2,2,1,1,2---,2,1,1,1,1,2,2,1,1,2,・・・]={108+√ (21170)}/97
y={-108+√ (21170)}/97=[0:2,1,1,2,2,1,1,1,1,2,---,2,1,1,2,2,1,1,1,1,2
y=1/(2+1/(1+1/(1+1/(2+1/x)
=1/(2+1/(1+1/(1+x/(2x+1)
=1/(2+1/(1+(2x+1)/(3x+1)
=1/(2+(3x+1)/(5x+2)
=(5x+2)/(13x+5)
y=
(734+5√ (21170)/(1889+13√(21170))
(734+5√ (21170)(1889-13√(21170)))/(3568321-3577730)
(1386526-1376050-97√ (21170))/(-9409)
(-108+√ (21170))/(97)・・・OK
===================================