■平方根と連分数(その67)
x^2-3x-1=0
α=(3+√13)/2,β=(3-√13)/2
===================================
b1=(α-β)/(α-β)=1
b2=(α^2-β^2)/(α-β)=(α+β)=3
b3=3b2+b1=10
b4=3b3+b2=33
b5=3b4+b3=109
b6=3b5+b4=360
b7=3b6+b5=1189
b8=3b7+b6=3927
b9=3b8+b7=12970
b10=3b9+b8=42837
これらはマルコフ数ではない
===================================
b1=(α+β)=3
b2=(α^2+β^2)=(α+β)^2-2αβ =11
b3=3b2+b1=36
b4=3b3+b2=119
b5=3b4+b3=393
b6=3b5+b4=1298
b7=3b6+b5=4287
b8=3b7+b6=14159
b9=3b8+b7=46764
b10=3b9+b8=154451
これらはマルコフ数ではない
===================================
λ^2=9-4/F^2
λ^2-4=5-4/F^2
L^2-5F^2=4(-1)^n
Fがフィボナッチ数の奇数項のとき、L^2-5F^2=-4
L^2=5F^2-4
(L/F)^2=5-4/F^2・・・平方となる
ペル数の場合は
Q^2-8P^2=4(-1)^n
λ^2=9-4/P^2
λ^2-4=5-4/P^2
Pがペル数の奇数項のとき、Q^2-8P^2=-4
Q^2=8P^2-4
(Q/P)^2=8-4/P^2
λ^2=12-4/P^2でないと平方にならない
λ^2-4=8-4/P^2
P=29のときλ=√ (10088)/29
x^2-λx-1=0
x={λ+(λ^2-4)^1/2}/2
x={√ (10088)+82}/58>3???・・・おかしい
1/x=58/{√ (10088)+82}={√ (10088)-82}/58
===================================
√5/1→x^2-x-1
√8/2→x^2-2x-1
√221/5→5x^2-11x-5
√1517/13→13x^2-29x-13
√7565/29→29x^2-63x-31・・・ペル
√10400/34→17x^2-38x-17
√71285/89→89x^2-199x-89
√257045/169→169x^2-367x-181・・・ペル
√338720/194→97x^2-216x-98・・・どちらでもない
√488597/233→233x^2-521x-233
===================================
29x^2-63x-31=0
x={63+√ (7565)}/58++
x=2+{-53+√ (7565)}/58
x=2+1/(58/{-53+√ (7565)})
x=2+1/({53+√ (7565)}/82)
x=2+1/(1+{-29+√ (7565)}/82)
x=2+1/(1+1/(82/{-29+√ (7565)})
x=2+1/(1+1/({29+√ (7565)}/82)
x=2+1/(1+1/(1+{-53+√ (7565)}/82)
x=2+1/(1+1/(1+1/(82/{-53+√ (7565)})
x=2+1/(1+1/(1+1/({53+√ (7565)}/58)
x=2+1/(1+1/(1+1/(2+{-63+√ (7565)}/58)+++
x=2+1/(1+1/(1+1/(2+1/(58/{-63+√ (7565)})
x=2+1/(1+1/(1+1/(2+1/({63+√ (7565)}/62)
x=2+1/(1+1/(1+1/(2+1/(2+{-61+√ (7565)}/62)
x=2+1/(1+1/(1+1/(2+1/(2+1/(62/{-61+√ (7565)})
x=2+1/(1+1/(1+1/(2+1/(2+1/({61+√ (7565)}/62)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+{-63+√ (7565)}/62)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(62/{-63+√ (7565)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/({63+√ (7565)}/58))+++
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+{-53+√ (7565)}/58))
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(58/{-53+√ (7565)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/{53+√ (7565)}/82)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(1+{-29+√ (7565)}/82)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(1+1/(82/{-29+√ (7565)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(1+1/{29+√ (7565)})/82
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+(-53+√ (7565)})/82))
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(82/{-53+√ (7565)})
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/({53+√ (7565)}/58)
x=2+1/(1+1/(1+1/(2+1/(2+1/(2+1/(2+1/(1+1/(1+1/(2+{-63+√ (7565)}/58)+++
===================================
x=[2:1,1,2,2,2,--2,1,1,2,2,2,--2,1,・・・]={63+√ (7565)}/58
y={-63+√ (7565)}/58=[0:2,2,2,1,1,2,---2,2,2,1,1,2]
y=1/(2+1/(2+1/x)=1/(2+x/(2x+1)=(2x+1)/(5x+2)
y=
(184+2√ (7565))/(431+5√ (7565))
(184+2√ (7565))(431-5√ (7565))/(185761-189125)
(79304-75650-58√ (7565))/(-3364)
(3654-58√ (7565))/(-3364)=(-63+√ (7565))/(58)・・・OK
===================================