■平方根と連分数(その47)
α=[a0:a1,a2,・・・]
λ=[an+1:an+2,an+3,・・・]+[0:an,an-1,・・・,a1]
===================================
α→λ=[2;2,1,1,2,2,1,1,,,]+[0;1,1,2,2,1,1,2,2,,,]
→(9+√221)/10+(-9+√221)/10=√221/5
α→λ=[2;1,1,1,1,,,]+[0;2,1,1,1,,,]
→φ+1+1/(φ+1)=3
===================================
x=[2:1,2,2,1,2,・・・],y=1/x
x=2+1/(1+1/(2+1/x))
x=2+1/(1+x/(2x+1))
x=2+(2x+1)/(3x+1)=(8x+3)/(3x+1)
3x^2-7x-3=0
x={7+(85)^1/2}/6
y=6/{7+(85)^1/2}={(85)^1/2-7}/6
λ=(85)^1/2/3=(9・9+4)/3
λ=(9・Q^2+4)^1/2/Q
===================================
x=[2:1,1,2,2,1,1,2,・・・],y=1/x
x=2+1/(1+1/(1+1/(2+1/x))
x=2+1/(1+1/(1+x/(2x+1))
x=2+1/(1+(2x+1)/(3x+1))
x=2+(3x+1)/(5x+2)
x=(13x+5)/(5x+2)
5x^2-11x-5=0
x={11+(221)^1/2}/10
y=10/{11+(221)^1/2}={(221)^1/2-11}/10
λ=(221)^1/2/5=(9・25+4)^1/2/5にならない
λ=(9・Q^2-4)^1/2/Qになる
α=(9+√221)/10=[2:2,1,1,2,2,1,1,・・・]のとき
λ>[2:2,1,1,2,2,1,1,・・・]+[0:1,1,2,2,1,1,2,2,・・・,2]→(9+√221)/10+(-9+√221)/10=√221/5
x=[2:2,1,1,2,2,1,1,・・・]
y=[0:1,1,2,2,1,1,2,2,・・・]=1/(1+1/(1+1/x))=1/(1+1/(x+1)/x)=1/(1+x/(x+1))=(x+1)/(2x+1)=(-9+√221)/10
λ=(9・25-4)^1/2/5=(9・Q^2-4)^1/2/Qになっている
===================================
x=[2:1,1,1,2,2,1,1,1,2,・・・],y=1/x
x=2+1/(1+1/(1+1/(1+1/(2+1/x))
x=2+1/(1+1/(1+1/(1+x/(2x+1))
x=2+1/(1+1/(1+(2x+1)/(3x+1))
x=2+1/(1+(3x+1)/(5x+2)
x=2+(5x+2)/(8x+3)
x=(21x+8)/(8x+3)
8x^2-18x-8=0
x={9+(145)^1/2}/8
y=8/{9+(145)^1/2}={(145)^1/2-9}/8
λ=(145)^1/2/4=(9・16+4)^1/2/4
λ=(9・Q^2+4)^1/2/Q・・・になっていない
===================================
α→λ=[2;2,1,1,1,1,2,2,1,1,,,]+[0;1,1,1,1,2,2,1,1,1,1,,,]
x=2+1/(2+1/(1+1/(1+1/(1+1/(1+1/x))
x=2+1/(2+1/(1+1/(1+1/(1+x/(x+1))
x=2+1/(2+1/(1+1/(1+(x+1)/(2x+1))
x=2+1/(2+1/(1+(2x+1)/(3x+2))
x=2+1/(2+(3x+2)/(5x+3))
x=2+(5x+3)/(13x+8)=(31x+19)/(13x+8)
13x^2-23x-19=0
x={23+(1517)^1/2}/26
y=1/(1+1/(1+1/(1+1/(1+1/(2+1/(2+y))
y=1/(1+1/(1+1/(1+1/(1+(y+2)/(2y+5))
y=1/(1+1/(1+1/(1+(2y+5)/(3y+7))
y=1/(1+1/(1+(3y+7)/(5y+12))
y=1/(1+(5y+12)/(8y+19))
y=(8y+19)/(13y+31)
13y^2+23y-19=0
y={-23+(1517)^1/2}/26
λ=(1517)^1/2/13=(1517)^1/2/13
→(9・169-4)^1/2/13
===================================
x=[2:1,1,1,1,1,2,2,1,1,1,1,1,2,・・・],y=1/x
x=2+1/(1+1/(1+1/(1+1/(1+1/(1+1/(2+1/x))
x=2+1/(1+1/(1+1/(1+1/(1+1/(1+x/(2x+1))
x=2+1/(1+1/(1+1/(1+1/(1+(2x+1)/(3x+1))
x=2+1/(1+1/(1+1/(1+(3x+1)/(5x+2))
x=2+1/(1+1/(1+(5x+2)/(8x+3))
x=2+1/(1+(8x+3)/(13x+5))
x=2+(13x+5)/(21x+8)
x=(55x+21)/(21x+8)
21x^2-47x-21=0
x={47+(3973)^1/2}/42
y=42/{-47+(3973)^1/2}={(3973)^1/2-47}/42
λ=(3973)^1/2/21=(9・441+4)^1/2/21
λ=(9・Q^2+4)^1/2/Q・・・なりたつ
===================================