■平方根と連分数(その38)
α=[a0:a1,a2,・・・]
λ=[an+1:an+2,an+3,・・・]+[0:an,an-1,・・・,a1]
===================================
α=Φのとき
λ>[1:1,1,1,・・・]+[0:1,1,1,・・・,1]→φ+φ-1=√5
===================================
α=1+√2のとき
λ>[2:2,2,2,・・・]+[0:2,2,2,・・・,2]→1+√2+√2-1=√8
===================================
α=(3+√13)/2のとき
λ>[3:3,3,3,・・・]+[0:3,3,3,・・・,3]→(3+√13)/2+(-3+√13)/2=√13
===================================
α=(9+√221)/10=[2:2,1,1,2,2,1,1,・・・]のとき
λ>[2:2,1,1,2,2,1,1,・・・]+[0:1,1,2,2,1,1,2,2,・・・,2]→(9+√221)/10+(-9+√221)/10=√221/5
x=[2:2,1,1,2,2,1,1,・・・]
y=[0:1,1,2,2,1,1,2,2,・・・]=1/(1+1/(1+1/x))=1/(1+1/(x+1)/x)=1/(1+x/(x+1))=(x+1)/(2x+1)=(-9+√221)/10
===================================
α=(√3)=[1:1,2,1,2,1,2,・・・]のとき
λ>[2:1,2,1,2,・・・]+[0:1,2,1,2,・・・,1]→1+(√3)-1+√3=√12
===================================
α=(9√3+65)/22
(9√3+65)/22-3=(9√3-1)/22
22/(9√3-1)=(9√3+1)/11
(9√3+1)/11-1=(9√3-10)/11
11/(9√3-10)=(9√3+10)/13
(9√3+10)/13-1=(9√3-3)/13
13/(9√3-3)=(9√3+3)/18
(9√3+3)/18-1=(9√3-15)/18
18/(9√3-15)=(9√3+15)
(9√3+15)-30=(9√3-15)
1/(9√3-15)=(9√3+15)/18
(9√3+15)/18-1=(9√3-3)/18
18/(9√3-3)=(9√3+3)/13
(9√3+3)/13-1=(9√3-10)/13***
13/(9√3-10)=(9√3+10)/11
(9√3+10)/11-2=(9√3-12)/11
11/(9√3-12)=(9√3+12)/9
(9√3+12)/9-3=(9√3-15)/9
9/(9√3-15)=(9√3+15)/2
(9√3+15)/2-15=(9√3-15)/2
2/(9√3-15)=(9√3+15)/9
(9√3+15)/9-3=(9√3-12)/9
9/(9√3-12)=(9√3+12)/11
(9√3+12)/11-2=(9√3-10)/11
11/(9√3-10)=(9√3-10)/13***
λ=(9√3+65)/22=[3:1,1,1,30,1,1,2,3,15,3,2,2,3,15,3,2,2,3,15,3,2,・・・]誤り発見
===================================
λ>[2:3,15,3,2・・・]+[0:2,3,15,3,2,・・・]
x=[2:3,15,3,2・・・]
= 2+1/(3+1/(15+1/(3+1/(2+1/x)))
= 2+1/(3+1/(15+1/(3+x/(2x+1))
= 2+1/(3+1/(15+(2x+1)/(7x+3))
= 2+1/(3+(7x+3)/(107x+46))
=2+(107x+46)/(328x+141)
x=(763x+328)/(328x+141)
328x^2-622x-328=0
x={311+(311^2+328^2)^1/2}/328={311+452}/328=2.32
y=1/x=0.30
===================================
λ>[3:15,3,2,2・・・]+[0:2,2,3,15,3,2,・・・]
x=[3:15,3,2,2・・・]
= 3+1/(15+1/(3+1/(2+1/(2+1/x)))
= 3+1/(15+1/(3+1/(2+x/(2x+1))
= 3+1/(15+1/(3+(2x+1)/(5x+2))
= 3+1/(15+(5x+2)/(17x+7))
=3+(17x+7)/(260x+107)
x=(797x+328)/(260x+107)
260x^2-690x-328=0
x={345+(345^2+260・328)^1/2}/260={345+452}/260=3.06
y=1/(2+1/(2+1/x))=1/(2+x/(2x+1))=(2x+1)/(5x+2)=7.12/17.3=0.41
===================================
3+1/1>[3:1,・・・]>3+1/2
3+1/2>[3:2,・・・]>3+1/3
3+1/3>[3:2,・・・]>3+1/4
1/1>[0:1,・・・]>1/2
1/2>[0:2,・・・]>1/3
1/3>[0:3,・・・]>1/4
===================================
λ>[3:2,2,3,15,・・・]+[0:2,2,3,15,3,2,・・・]
x=[3:2,2,3,15,・・・]
= 3+1/(2+1/(2+1/(3+1/(15+1/x)))
= 3+1/(2+1/(2+1/(3+x/(15x+1))
= 3+1/(2+1/(2+(15x+1)/(46x+3))
= 3+1/(2+(46x+3)/(107x+7))
=3+(107x+7)/(260x+17)
x=(887x+58)/(260x+17)
260x^2-870x-58=0
x={435+(435^2+260・58)^1/2}/260={435+452}/260=3.41
y=1/(2+1/(2+1/x))=1/(2+x/(2x+1))=(2x+1)/(5x+2)=7.82/19.0=0.41
===================================
y=[0:15,3,2,1,1,30,1,1,1]
1/15>y>1/16
===================================