■平方根と連分数(その37)

α=[a0:a1,a2,・・・]

λ=[an+1:an+2,an+3,・・・]+[0:an,an-1,・・・,a1]

===================================

α=Φのとき

λ>[1:1,1,1,・・・]+[0:1,1,1,・・・,1]→φ+φ-1=√5

===================================

α=1+√2のとき

λ>[2:2,2,2,・・・]+[0:2,2,2,・・・,2]→1+√2+√2-1=√8

===================================

α=(3+√13)/2のとき

λ>[3:3,3,3,・・・]+[0:3,3,3,・・・,3]→(3+√13)/2+(-3+√13)/2=√13

===================================

α=(9+√221)/10=[2:2,1,1,2,2,1,1,・・・]のとき

λ>[2:2,1,1,2,2,1,1,・・・]+[0:1,1,2,2,1,1,2,2,・・・,2]→(9+√221)/10+(-9+√221)/10=√221/5

x=[2:2,1,1,2,2,1,1,・・・]

y=[0:1,1,2,2,1,1,2,2,・・・]=1/(1+1/(1+1/x))=1/(1+1/(x+1)/x)=1/(1+x/(x+1))=(x+1)/(2x+1)=(-9+√221)/10

===================================

α=(√3)=[1:1,2,1,2,1,2,・・・]のとき

λ>[2:1,2,1,2,・・・]+[0:1,2,1,2,・・・,1]→1+(√3)-1+√3=√12

===================================

α=[n:1,n,1,n,1,n,・・・]のとき

x=n+1/(1+1/x)

x=n+x/(x+1)={(n+1)x+n}/(x+1)

x^2-nx-n=0

x={n+(n^2+4n)^1/2}/2

n=1のとき、{1+(5)^1/2}/2

n=2のとき、{2+(12)^1/2}/2=1+√3

n=3のとき、{3+(21)^1/2}/2

n=4のとき、{4+(32)^1/2}/2=2+2√2

n=5のとき、{5+(45)^1/2}/2

n=6のとき、{6+(60)^1/2}/2

===================================

λ=[n:1,n,1,n,1,・・・]+[0:1,n,1,n,1,n,・・・]

x={n+(n^2+4n)^1/2}/2

y=1/(1+1/x)=x/(x+1)

y={n+(n^2+4n)^1/2}/{n+2+(n^2+4n)^1/2}

y={n+(n^2+4n)^1/2}{n+2-(n^2+4n)^1/2}/4

y={n(n+2)-n^2-4n+2(n^2+4n)^1/2}/4

y={-n+(n^2+4n)^1/2}/2

λ=(n^2+4n)^1/2

===================================

λ=[3:2,3,2,3,2・・・]+[0:2,3,2,3,2,3,・・・]

x=3+1/(2+1/x)

x=3+x/(2x+1)=(7x+3)/(2x+1)

2x^2-6x-3=0

x={3+(15)^1/2}/2

y=1/(2+1/x)=x/(2x+1)

===================================