■パスカルの三角形と作図可能な正多角形(その11)

1  1                 奇数2,偶数0

1  2  1              奇数2,偶数1

1  3  3  1           奇数4,偶数0

1  4  6  4  1        奇数2,偶数3

1  5  10  10  5  1     奇数4,偶数2

1  6  15  20  15  6  1  奇数4,偶数3

 パスカルの三角形のn行の奇数と偶数の割合を計算する.n→∞のとき,奇数と偶数の比は0に近づく. 

===================================

(Q)(a+b)^nの二項展開の係数は,nが2^k−1の形であるとき,そのときに限りすべて奇数となることを証明せよ.

(A)(a+b),(a+b)^2,・・・,(a+b)^n-1に対して成り立っていると仮定して,(a+b)^nに対しても成り立つことを証明する.

 両端の1を除くn−1個の二項係数は

  n/1=n,n(n−1)/1・2,・・・,n(n−1)・・・1/1・2・・・(n−1)=n

 これらがすべて奇数であるための必要十分条件は

[1]両端のnが奇数であること

[2]残りの数の分母、分子から奇数を取り去って作られる数が奇数であることである.

 n=2m+1とおけば,これらの数は

  m/1=m,m(m−1)/1・2,・・・,m(m−1)・・・1/1・2・・・(m−1)=m

で表される.m<nであるから,このm−1個の数はmが2^k-1−1の形であるとき,そのときに限りすべて奇数となる.

  n=2m+1=2(2^k-1−1)+1=2^k−1

より,QED.

===================================

[1]n=pのとき,nCmはpの倍数である

 両端nC0=nCn=1ですから,両端以外のnCm(1≦m≦n−1)について考えます.n=pのとき

  pCm=p!/m!(p−m)!

1≦m≦p−1,1≦p−m≦p−1より,分母は素因数pを含んでいない.よって,pCmはpの倍数である.

[2]n=2^kのとき,nCmは偶数である

  (a+b)^2=a^2+{係数が偶数の項}+b^2

  {(a+b)^2}^2=a^4+{係数が偶数の項}+b^4

  {(a+b)^4}^2=a^8+{係数が偶数の項}+b^8,・・・

数学的帰納法より,nCmは偶数である

[3]n=2^k−1のとき,nCmは奇数である

 [2]より,n+1Cmは偶数である.

  n+1Cm=nCm-1+nCm

  1+nC1=偶数→nC1は奇数

  nC1+nC2=偶数→nC2は奇数,・・・

よって,nCmは奇数である.

 さらに,nCmがすべては奇数になるのは,n=2^k−1のときに限るというのが冒頭の命題です.実際,他の行には偶数があるのですが,

[4]n=2^kのとき,両端以外のnCm,2^k−1個はすべて偶数である

[5]n=2^k+1のとき,真ん中のnCm,2^k−2個はすべて偶数である

[6]n=2^k+2のとき,真ん中のnCm,2^k−3個はすべて偶数である

・・・・・・・・・・・・・・・

[7]n=2^k+1−2=2^k+2^k−2のとき,真ん中のnCm,2^k−(2^k−1)=1個はすべて偶数である

[8]nCmがすべては奇数になるのは,n=2^k−1のときだけ

ということになります.

===================================

【まとめ】

 nCm(m=0〜n)がすべては奇数になるのは,n=2^k−1のときに限る.さらに,k>1に対してnCm(m=1〜n−1)がkで割り切れるための必要十分条件は,kが素数であって,n=k^mの形に書けるときに限る.

===================================

[1]             1   1

[2]           1   0   1

[3]         1   1   1   1

[4]       1   0   0   0   1

[5]     1   1   0   0   1   1 

[6]   1   0   1   0   1   0   1

[7] 1   1   1   1   1   1   1   1 

どの行も2^a3^b+1のなるはずである。

[1]3=2^2-1

[2]4+1=5=2^2+1

[3]8+4+2+1=15=2^4-1

[4]16+1=17=2^4+1=17=2^4+1

[5]32+16+2+1=51=3・17=(2+1)(2^4+1)

[6]64+16+4+1=85=5・17=(2^2+1)(2^4+1)

[7]128+64+32+1+8+4+2+1=2^8-1

===================================

[07]                 1   1   1   1   1   1   1   1

[08]               1   0   0   0   0   0   0   0   1

[09]             1   1   0   0   0   0   0   0   1   1

[10]           1   0   1   0   0   0   0   0   1   0   1

[11]         1   1   1   1   0   0   0   0   1   1   1   1

[12]       1   0   0   0   1   0   0   0   1   0   0   0   1

[13]     1   1   0   0   1   1   0   0   1   1   0   0   1   1  

[14]   1   0   1   0   1   0   1   0   1   0   1   0   1   0   1

[15] 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 

[7]128+64+32+1++8+4+2+1=2^8-1

[8]256+1=2^8+1=257=2^8+1

[9]512+256+2+1=3・257=(2+1)(2^8+1)

[10]1024+256+4+1=5・257=(2^2+1)(2^8+1)

[11]2048+1024+512+256+8+4+2+1=15・257=3・5・(2^8+1)

[12]4096+256+16+1=17・257=(2^4+1)(2^8+1)

[13]8192+4096+512+256+32+16+2+1=51・257=(2+1)(2^4+1)(2^8+1)

[14]16384+4096+1024+256+64+16+4+1=85・257=(2^2+1)(2^4+1)(2^8+1)

[15]2^16-1

===================================