■分割数の近似式(その5)

【3】分割数の近似式・再考

 実は,円周法に基づく漸近公式の結果を正確に証明するだけでも,長くてこみ入った理論が必要になります.そこで漸近公式の概要だけを簡単に述べますが,σ(k)をkの約数の和とすると,p(n)に対する漸化式

  p(n)=1/nΣσ(k)p(n-k)

において,σ(k)の漸近的振る舞い

  1/n^2Σσ(k)〜π^2/12

を用いると,nが大きい場合の分割数の漸近挙動

  p(n)〜exp(π√(2n/3))/4n√3

を得ることができます.このことから,p(n)は準指数関数と考えることができます(p(n)^(1/n)→1).

===================================

【4】おまけ

 n=243の場合,p(243)=133978259344888に対して

  p(n)〜exp(π√(2n/3))/4n√3〜1.38×10^14

 ラマヌジャンはp(n)が満たす合同式について

  p(5n+4)=0  mod5

  p(7n+5)=0  mod7

  p(11n+6)=0  mod11

  p(599)=0  mod5^3

  p(721)=0  mod11^2

を予想し,それらを証明しています.

===================================