ƗîPj
(2k)^2=4k^2=2N
(2k+1)^2=4k^2+4k+1=2N+1
(2k)^3=8k^3=2N
(2k+1)^3=8k^3+12k^2+6k+1=2N+1
(3k)^2=9k^2=3N
(3k+1)^2=9k^2+6k+1=3N+1
(3k+2)^2=9k^2+12k+4=3N+1
(3k)^3=27k^3=3N
(3k+1)^3=27k^3+27k^2+9k+1=3N+1
(3k+2)^3=27k^3+54k^2+36k+8=3N+2
(4k)^2=4N
(4k+1)^2=4N+1
(4k+2)^2=4N
(4k+3)^2=4N+1
(4k)^3=4N
(4k+1)^3=4N+1
(4k+2)^3=4N
(4k+3)^3=4N+3
(5k)^2=5N
(5k+1)^2=5N+1
(5k+2)^2=5N+4
(5k+3)^2=5N+4
(5k+4)^2=5N+1
(5k)^3=5N
(5k+1)^3=5N+1
(5k+2)^3=5N+3
(5k+3)^3=5N+2
(5k+4)^3=5N+4