■フィボナッチ数の逆数の和

Σ1/FnFn+2=1/2+1/3+1/10+1/24+・・・

===================================

Σ1/FnFn+2=Σ(1/Fn-1/Fn+2)/(Fn+2-Fn)=Σ(1/Fn-1/Fn+2)/(Fn+1)=Σ(1/FnFn+1-1/Fn+1Fn+2)

=(1/F1F2-1/F2F3)+(1/F2F3-1/F3F4)+・・・=1/F1F2=1

===================================

これはΣ1/n!(n+2)=1/2の証明と同様の方法である。

Σ1/n!{1/(n+1)-1/(n+2)}=Σ1/(n+2)!を考える

Σ1/n!{1/(n+1)}=Σ1/(n+1)!

Σ1/n!(n+2)=Σ1/(n+1)!-Σ1/(n+2)!={1/2!+1/3!+1/4!+・・・}-{1/3!+1/4!+1/5!+・・・}

=1/2

===================================