■合同数問題(その12)
【1】タネルの定理(合同数の判定アルゴリズム)
 A=1,2,3,4は合同数ではなく,A=5,6,7は合同数であるが,与えられた正の整数Aが合同数であるかどうかを判定する手順については,タネルの定理(1983)
 「Aを平方因子をもたない正の奇数とすると,Aが合同数ならば
  2x^2+y^2+8z^2=Aを満たす(x,y,z)の組数は,2x^2+y^2+32z^2=Aを満たす(x,y,z)の組数の2倍に等しい.(BSD予想が正しいならば逆も成立する.)」
 たとえば,A=101(合同数)の場合,A=5(mod8)であるが,
  2x^2+y^2+8z^2=A→0組
  2x^2+y^2+32z^2=A→0組
非自明解そのものを与えることはできないものの,合同数か否かの判定は可能である.
===================================
 f(A)=#{(x,y,z)|2x^2+y^2+8z^2=A}
 g(A)=#{(x,y,z)|2x^2+y^2+32z^2=A}
 h(A)=#{(x,y,z)|4x^2+y^2+8z^2=A/2}
 k(A)=#{(x,y,z)|4x^2+y^2+32z^2=A/2}
 平方因子を含まないAに対して,タネルの定理が適用できる.#は(x,y,z)の個数を表す.Aが奇数のとき,Aが合同数であればf(A)=2g(A)のであるが,Aが偶数のとき,Aが合同数であればh(A)=2k(A)となるというのがタネルの定理である.
 たとえば,h(2)=2,k(2)=2→A=2は合同数ではない.
 タネルの定理の逆,たとえば,
  f(5)=0,g(5)=0→A=5は合同数である.
が成り立つためには,BSD予想が正しいことを仮定しなければならないのである.
===================================
 
